Multivariate Adaptive Constructed Analogs (MACA) is a statistical method for downscaling Global Climate Models (GCMs) from their native coarse resolution to a higher spatial resolution that captures reflects observed patterns of daily near-surface meteorology and simulated changes in GCMs experiments.
Usage
getMACA(
AOI,
varname,
timeRes = "day",
model = "CCSM4",
scenario = "rcp45",
startDate,
endDate = NULL,
verbose = FALSE,
ID = NULL,
dryrun = FALSE
)
Arguments
- AOI
an sf of SpatVect point or polygon to extract data for
- varname
variable name to extract (e.g. tmin)
- timeRes
daily or monthly
- model
GCM model name generating
- scenario
A climate or modeling scenario
- startDate
a start date given as "YYYY-MM-DD" to extract data for
- endDate
an end date given as "YYYY-MM-DD" to extract data for
- verbose
Should messages be emited?
- ID
a column of unique identifiers
- dryrun
Return summary of data prior to retrieving it
Value
if AOI is polygon a list of SpatRasters, if AOI is a point then a data.frame of modeled records.
See also
Other shortcuts:
get3DEP()
,
getBCCA()
,
getCABCM()
,
getCHIRPS()
,
getDaymet()
,
getGLDAS()
,
getGridMET()
,
getISRIC_soils()
,
getLCMAP()
,
getLOCA()
,
getLOCA_hydro()
,
getLivneh()
,
getLivneh_fluxes()
,
getMODIS()
,
getNASADEM()
,
getNLCD()
,
getNLDAS()
,
getPRISM()
,
getTerraClim()
,
getTerraClimNormals()
,
getVIC()
,
getWorldClim()