Local, Focal, Zonal, and Global Operations
Lab this Week: Lightning Talks, In Person (your final lab assignment)
Final Report Due: May 14th, 2025 5PM
All regrades have been completed and grades have been updated in Canvas.
No more late work accepted after May 9th, 2025 5PM. Email me directly if something needs review!
The extra credit opportunity is to compile all of your labs into your personal webpage (complete with image and description or what you did and learned). This is due May 14th, 2025 5PM.
“Opps” pass assignments can only be computed after the last assignment is submitted.
Dana Tomlin (Tomlin 1990) defined a framework for the analyizing field data stored as grided values.
He called this framework map algebra.
Map algebra operations and functions are broken down into four types:
local
focal
zonal
global
Local operations and functions are applied to each individual cell and only involve those cells sharing the same location.
More than one raster can be involved in a local operation.
For example, rasters can be summed ( each overlapping pixels is added)
Local operations also include reclassification of values.
Also referred to as “neighborhood” operations.
Assigns summary values to the output cells based on the neighboring cells in the input raster.
For example, a cell output value can be the average of 9 neighboring input cells (including the center cell) - this acts as a smoothing function.
Focal operations require a window (also known as a kernel) to work over
Additionally a kernel also defines the weight each neighboring cell contributes to the summary statistic.
For example, all cells in a 3x3 neighbor could each contribute 1/9th of their value to the summarized value (i.e. equal weight).
The weight can take on a more complex form defined by a function; such weights are defined by a kernel function.
One popular function is a Gaussian weighted function which assigns greater weight to nearby cells than those further away (Toblers first law)
Lets apply a smoothing kernel to our Fort Collins elevation data over an 25x25 window, using the mean operator
matrix(1,nrow=25,ncol=25)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
#> [1,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [2,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [3,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [4,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [5,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [6,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [7,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [8,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [9,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [10,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [11,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [12,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [13,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [14,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [15,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [16,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [17,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [18,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [19,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [20,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [21,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [22,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [23,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [24,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [25,] 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
#> [1,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [2,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [3,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [4,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [5,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [6,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [7,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [8,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [9,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [10,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [11,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [12,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [13,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [14,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [15,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [16,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [17,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [18,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [19,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [20,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [21,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [22,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [23,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [24,] 1 1 1 1 1 1 1 1 1 1 1 1
#> [25,] 1 1 1 1 1 1 1 1 1 1 1 1
Zonal operations compute a summary values (such as the mean) from cells aggregated to some zonal unit.
Like focal operations, a zone and a mediating function must be defined
The most basis example of a zonal function is aggregation!
For more complicated object zones, exactextractr is a fast and effiecient R utility that binds the C++ exactextract
tool.
What is the county level mean January rainfall in California?
Global operations make use of some or all input cells when computing an output cell value.
They are a special case of zonal operations with the entire raster represents a single zone.
Examples include generating descriptive statistics for the entire raster dataset
global
: computes statistics for the values of each layer in a Raster* object.
mean()
In the terra package, functions like max
, min
, and mean
, return a new SpatRast* object (with a value computed for each cell).
In contrast, global
returns a single value, computed from the all the values of a layer.
Install and load the gifski
package
save_gif: combines many individual plots
A for loop build the plots
The plot is what we have been doing all along (if you want a ggplot
you must print the object!)
gif_file: the path to save the image
width/height: the image dimensions
delay: the pause between frames
loop: should the gif play over and over?
To date, we have focused on supervised learning algorithms.
As a final example, we will explore an unsupervised learning algorithm: Kmeans clustering.
Unsupervised learning is a type of machine learning where the algorithm learns patterns and relationships in the data without any labeled output or target variable.
k
clusters based on the distance between points in a multi-dimensional space.The algorithm works by iteratively assigning points to the nearest cluster center and updating the cluster centers based on the mean of the assigned points.
The steps are as follows:
k
cluster centers randomly.The algorithm continues until the cluster centers no longer change significantly or a maximum number of iterations is reached.
Kmeans is sensitive to the initial placement of the cluster centers, so it is often run multiple times with different initializations to find the best clustering solution.
Kmeans is commonly used in image segmentation, where the goal is to group pixels into clusters based on their color or intensity values.
library(climateR)
params <- c("ppt", "tmax", "tmin", "srad", "q")
AOI <- AOI::aoi_get(state = "CO")
(co <- getTerraClim(AOI,
params,
startDate = "2018-10-01") %>%
unlist() %>%
rast() |>
setNames(params))
#> class : SpatRaster
#> dimensions : 99, 170, 5 (nrow, ncol, nlyr)
#> resolution : 0.04166669, 0.0416667 (x, y)
#> extent : -109.0833, -102, 36.95833, 41.08334 (xmin, xmax, ymin, ymax)
#> coord. ref. : +proj=longlat +ellps=WGS84 +no_defs
#> source(s) : memory
#> names : ppt, tmax, tmin, srad, q
#> min values : 26.2, 0.3, 112.1, 2.8, -6.7
#> max values : 217.4, 118.6, 136.2, 21.3, 4.8
#> unit : mm, mm, W/m^2, degC, degC
#> time : 2018-10-01 UTC
Each layer of a SpatRaster is a vector of values.
Like our other examples, we need to prepare the data for clustering.
NA
data for latter referencekmeans()
function performs k-means clustering on a dataset.x
: a numeric matrix or data frame containing the data to be clustered.centers
: the number of clusters to create or a set of initial cluster centers.iter.max
: the maximum number of iterations to run the algorithm.(E <- kmeans(vs, 5, iter.max = 100))
#> K-means clustering with 5 clusters of sizes 2780, 6387, 582, 4304, 2777
#>
#> Cluster means:
#> ppt tmax tmin srad q
#> 1 -0.14064181 -0.1709533 1.4299785 0.8277612 0.9760000
#> 2 -0.54243458 -0.2358696 -0.1272346 0.6911123 0.7024391
#> 3 3.17949220 4.6155466 -0.5704863 -1.7480514 -1.2250697
#> 4 0.50361300 -0.0780229 -1.0492901 -1.0631595 -1.1094580
#> 5 -0.05851671 -0.1327648 0.6069409 -0.4040712 -0.6163705
#>
#> Clustering vector:
#> [1] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [37] 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [73] 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2
#> [109] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [145] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 5
#> [181] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 5 4
#> [217] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5
#> [253] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [289] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [325] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [361] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4
#> [397] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [433] 5 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [469] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [505] 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [541] 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [577] 4 4 4 4 4 4 4 5 5 5 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 2 2 2 2 2 2 2 2
#> [613] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [649] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 5
#> [685] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4
#> [721] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5
#> [757] 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [793] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [829] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5
#> [865] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4
#> [901] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5
#> [937] 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [973] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [1009] 2 2 2 2 2 2 2 2 2 2 2 2 5 2 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [1045] 5 2 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [1081] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 2 2 2 2 2 2
#> [1117] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [1153] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [1189] 2 2 5 5 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 2 5 5 5 5 5 5 5 5 5
#> [1225] 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [1261] 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [1297] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [1333] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 2 2 2 2
#> [1369] 2 2 2 5 5 5 2 2 2 5 5 5 5 5 5 2 2 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4
#> [1405] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [1441] 4 4 4 5 5 5 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [1477] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [1513] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 2 2 2 2 2 2 2 2 5 5 5 2 2 5
#> [1549] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [1585] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5
#> [1621] 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [1657] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [1693] 2 2 2 2 2 2 2 2 5 5 5 2 2 5 2 2 2 2 2 2 2 5 2 2 2 2 5 5 5 5 5 5 5 5 5 5
#> [1729] 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [1765] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 2 2 2 2 2 2 2 2
#> [1801] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [1837] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5
#> [1873] 2 2 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4
#> [1909] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [1945] 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [1981] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [2017] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5
#> [2053] 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [2089] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [2125] 4 4 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [2161] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [2197] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [2233] 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [2269] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 2 2
#> [2305] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [2341] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [2377] 2 2 2 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 4 4 4 4
#> [2413] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [2449] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2
#> [2485] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [2521] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5
#> [2557] 5 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [2593] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [2629] 4 4 4 4 4 4 4 5 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [2665] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [2701] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 4 5 2 2 2 2 2 2
#> [2737] 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [2773] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5
#> [2809] 5 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [2845] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [2881] 2 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 4 5 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4
#> [2917] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [2953] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 2 2 2 2 2 2
#> [2989] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [3025] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [3061] 2 2 2 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [3097] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [3133] 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [3169] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [3205] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [3241] 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [3277] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [3313] 4 4 4 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [3349] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [3385] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [3421] 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [3457] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 2 2
#> [3493] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [3529] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [3565] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4
#> [3601] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [3637] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2
#> [3673] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [3709] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [3745] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [3781] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5
#> [3817] 5 5 5 4 4 4 4 4 4 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [3853] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [3889] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [3925] 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [3961] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 4 4 4 4 4 5 5 5 5 4 4 4 4 4 4 4 4 5
#> [3997] 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [4033] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [4069] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4
#> [4105] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [4141] 4 4 4 4 5 5 5 5 5 5 5 5 4 4 4 5 5 4 4 4 4 4 4 4 4 5 5 5 5 5 2 2 2 2 2 2
#> [4177] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [4213] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [4249] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [4285] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5
#> [4321] 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 2 2 2 2 1 1 2 2 2 1 2 2 2 2 2 2
#> [4357] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [4393] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [4429] 2 2 2 4 4 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [4465] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [4501] 4 4 4 4 4 5 5 5 5 5 5 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [4537] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [4573] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 2 2 2 2
#> [4609] 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [4645] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5
#> [4681] 5 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [4717] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [4753] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 2 2 2 2 2 4 4 4 4 4 4 4 4 4
#> [4789] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4
#> [4825] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 2 2 1 1 1 1 1 1
#> [4861] 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [4897] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [4933] 2 2 2 2 2 2 2 2 2 4 4 4 2 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [4969] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [5005] 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
#> [5041] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [5077] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [5113] 4 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [5149] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5
#> [5185] 5 5 5 5 5 5 5 5 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [5221] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [5257] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4
#> [5293] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [5329] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 2 2
#> [5365] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [5401] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [5437] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [5473] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [5509] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 2 1 1 1 1 1 1 1 1 1 1
#> [5545] 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [5581] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [5617] 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [5653] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [5689] 4 4 4 4 4 5 5 4 5 5 5 5 5 5 5 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
#> [5725] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [5761] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4
#> [5797] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5
#> [5833] 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5
#> [5869] 5 5 5 5 5 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [5905] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [5941] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [5977] 4 4 4 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [6013] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 1 1 1 1
#> [6049] 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [6085] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [6121] 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2
#> [6157] 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [6193] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 2 2 1
#> [6229] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [6265] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [6301] 2 4 4 4 2 2 2 4 2 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4
#> [6337] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [6373] 4 4 4 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
#> [6409] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [6445] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 2 2 2 2 2 2 4
#> [6481] 4 4 4 2 2 2 2 2 2 2 4 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [6517] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5
#> [6553] 5 5 5 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [6589] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [6625] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 2 2 2 2 2 2 4 4 2 2 2 4 4 4 4
#> [6661] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [6697] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1
#> [6733] 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [6769] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [6805] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [6841] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [6877] 4 4 5 5 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 2 2 2 2 2
#> [6913] 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [6949] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [6985] 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [7021] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 4 4 4 4
#> [7057] 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 5 1 2 2 2 2 2 1 1 2 2 2 2 2 2 2
#> [7093] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [7129] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [7165] 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [7201] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 4 4 4 4 4 5 5 5 5 5 5 5 5
#> [7237] 5 5 1 5 5 5 5 5 5 5 5 5 5 5 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [7273] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [7309] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4
#> [7345] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [7381] 4 4 4 4 4 4 4 5 5 5 5 5 5 5 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [7417] 5 5 5 5 5 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [7453] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [7489] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [7525] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5
#> [7561] 5 5 5 5 5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 2
#> [7597] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [7633] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [7669] 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [7705] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 4 5 5
#> [7741] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
#> [7777] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [7813] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4
#> [7849] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [7885] 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [7921] 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [7957] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [7993] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [8029] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [8065] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [8101] 5 5 5 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [8137] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [8173] 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [8209] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5
#> [8245] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 2 2 2 2
#> [8281] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [8317] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4
#> [8353] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [8389] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [8425] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2
#> [8461] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [8497] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4
#> [8533] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [8569] 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [8605] 5 5 5 5 5 5 5 5 1 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [8641] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [8677] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [8713] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 5 5 5 5
#> [8749] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 5 5 5 5 5 1 1 1 1 1
#> [8785] 1 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [8821] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 2 2 2 2
#> [8857] 2 2 2 2 2 4 4 4 2 2 2 2 2 2 2 2 4 4 4 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [8893] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [8929] 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
#> [8965] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [9001] 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [9037] 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [9073] 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4
#> [9109] 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
#> [9145] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [9181] 2 2 2 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [9217] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5
#> [9253] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 5 5 5 1 1 1 1 1 1 1
#> [9289] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [9325] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4
#> [9361] 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4
#> [9397] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [9433] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [9469] 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [9505] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 2 2 2 2 2 2 2
#> [9541] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [9577] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [9613] 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [9649] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [9685] 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [9721] 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [9757] 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1
#> [9793] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
#> [9829] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [9865] 2 2 2 2 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4
#> [9901] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5
#> [9937] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1
#> [9973] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [10009] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4
#> [10045] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [10081] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 4 5 5 5 5
#> [10117] 5 5 5 5 5 5 1 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [10153] 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [10189] 2 2 2 2 2 2 2 2 2 2 2 2 5 2 2 2 2 2 2 2 2 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2
#> [10225] 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [10261] 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 5 5
#> [10297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [10333] 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [10369] 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4
#> [10405] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5
#> [10441] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [10477] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
#> [10513] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 2 2 2 2 2 2 2
#> [10549] 2 2 2 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4
#> [10585] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5
#> [10621] 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [10657] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [10693] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4
#> [10729] 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [10765] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1
#> [10801] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [10837] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [10873] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 2 2 2
#> [10909] 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [10945] 4 4 4 4 4 4 4 4 5 5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1
#> [10981] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [11017] 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [11053] 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 4 4 4 4 4
#> [11089] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5
#> [11125] 5 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [11161] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
#> [11197] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [11233] 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [11269] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 5 5 5 4 4 5 5 5 5 5 5
#> [11305] 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [11341] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [11377] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4
#> [11413] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [11449] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [11485] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [11521] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [11557] 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [11593] 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [11629] 4 4 4 4 5 5 5 5 5 5 4 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1
#> [11665] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [11701] 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 2
#> [11737] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [11773] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 4 5 5 5 5 5 5 5
#> [11809] 5 4 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [11845] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
#> [11881] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2
#> [11917] 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 4 4 4 3 3 3 4 4 4 4 4
#> [11953] 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 5 5 5 5 5
#> [11989] 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [12025] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [12061] 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4
#> [12097] 4 4 4 4 4 4 4 4 4 4 3 3 4 4 3 3 4 4 3 3 3 3 4 4 4 4 3 3 4 4 4 4 4 4 4 4
#> [12133] 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1
#> [12169] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [12205] 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [12241] 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [12277] 3 3 4 3 3 3 4 4 3 3 3 4 4 4 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5
#> [12313] 5 5 5 5 5 5 5 5 5 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1
#> [12349] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
#> [12385] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 1 1 1 1 1 2 2 2
#> [12421] 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 4 4 3 3 3 3 3 3 4 4 3 3 3
#> [12457] 3 3 3 3 3 3 4 3 3 3 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [12493] 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [12529] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
#> [12565] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 5 1 5 1 1 1 1 2 2 2 2 2 5 5 4 4 4 4 4
#> [12601] 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 4 4 3 3 3 3 3 4 3 3 3 3 3 3 3 4 4 3 3 3
#> [12637] 3 4 4 3 3 4 3 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 5 5 5 5 5 5
#> [12673] 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [12709] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [12745] 2 2 2 2 2 2 1 5 5 5 5 5 1 1 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [12781] 4 3 3 3 3 3 4 4 3 3 3 3 4 3 3 3 3 4 4 3 3 3 3 4 3 3 3 3 3 3 3 3 4 4 4 4
#> [12817] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1
#> [12853] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [12889] 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 5 5
#> [12925] 5 5 5 5 5 5 2 2 2 5 4 4 4 4 4 3 3 4 4 4 4 4 4 4 4 3 3 4 3 3 3 4 3 4 3 3
#> [12961] 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 5
#> [12997] 5 5 5 5 5 5 5 5 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [13033] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2
#> [13069] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 5 5 5 5 5 5 5 5 5 2 2
#> [13105] 5 4 4 4 4 4 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 4 4 3 3 3 3 3 3 4 3 3 3
#> [13141] 4 4 4 3 3 3 3 3 3 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3
#> [13177] 3 5 5 5 5 5 5 1 1 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [13213] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [13249] 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 5 5 5 5 4 4 4 5 5 5 4 4 4 4 4 4 4 3 4 4
#> [13285] 4 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 3 3 3 3 3 4 4 4 3 3 4 4 4 4 4 3 3 3 3 3
#> [13321] 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1
#> [13357] 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [13393] 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [13429] 2 2 1 1 1 1 1 1 5 5 5 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3
#> [13465] 3 3 3 3 3 3 3 4 3 3 4 4 4 4 4 4 4 3 3 4 4 4 3 3 3 3 5 5 5 5 5 5 5 5 5 5
#> [13501] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [13537] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [13573] 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 5
#> [13609] 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 3 3 3 3 3 3 3 3 4 3 4 4 3 3 3 3 4 4
#> [13645] 4 4 3 4 4 4 4 3 3 4 4 3 4 4 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [13681] 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [13717] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
#> [13753] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 5 5 4 4 5 5 5 4 4
#> [13789] 4 4 4 4 4 3 3 4 3 4 3 3 3 4 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 4 4 3 3 3 3
#> [13825] 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 5 5 5
#> [13861] 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [13897] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [13933] 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4
#> [13969] 4 4 4 4 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 4 3 5 5 5
#> [14005] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 5 5 5 5 5 5 5 5 5 1 1 1 1
#> [14041] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [14077] 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1
#> [14113] 1 1 1 1 1 1 1 1 1 1 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3
#> [14149] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5
#> [14185] 5 5 5 5 5 5 5 5 5 5 5 3 4 4 3 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [14221] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1
#> [14257] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
#> [14293] 1 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 4 3 3 4 3 4 4 4 4 3 3
#> [14329] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [14365] 5 3 3 3 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [14401] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
#> [14437] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 5 5 4 4 4 4
#> [14473] 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 4 3 4 4 3 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3
#> [14509] 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [14545] 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [14581] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [14617] 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4
#> [14653] 4 4 4 3 4 4 4 4 3 4 4 4 4 4 4 4 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5
#> [14689] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1
#> [14725] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [14761] 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1
#> [14797] 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 4 4 3 3 3 4 4 4 5 5 4 4 4 4 4 4 4 4 4 4 4
#> [14833] 4 4 4 4 4 4 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5
#> [14869] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [14905] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2
#> [14941] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [14977] 1 1 5 5 5 4 4 4 4 3 4 4 4 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 4 4 4 4 4
#> [15013] 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [15049] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [15085] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [15121] 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 5 4 4 4 4
#> [15157] 4 5 5 5 5 4 4 5 4 5 4 4 4 4 4 4 5 4 4 5 5 5 5 5 5 5 5 3 3 3 3 3 3 3 3 3
#> [15193] 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 3 5 5 5
#> [15229] 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [15265] 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [15301] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [15337] 5 5 5 4 4 5 4 4 4 5 5 5 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5
#> [15373] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 3 5 5 5 5 5 5 1 1 1 1 1 1 1
#> [15409] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
#> [15445] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
#> [15481] 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 4 5 5
#> [15517] 5 5 5 5 5 5 5 4 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
#> [15553] 5 5 5 5 5 5 5 5 5 3 3 3 3 3 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [15589] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
#> [15625] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [15661] 1 1 5 5 5 5 5 5 1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 5
#> [15697] 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 1 1 5 1 5 5 5 5 5 5 5 5 5
#> [15733] 3 3 4 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [15769] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [15805] 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 1 1 1
#> [15841] 1 1 1 1 1 1 1 5 5 5 5 1 1 5 5 5 5 5 5 5 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3 3
#> [15877] 3 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 5 5 5 5 5 5 5 5 5 5 3 3 5 5 5 1 1 1 1
#> [15913] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [15949] 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
#> [15985] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5
#> [16021] 1 1 1 5 5 5 5 5 5 5 5 5 5 5 3 3 3 5 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5
#> [16057] 5 5 5 1 1 1 1 5 5 5 5 5 5 5 5 5 3 3 3 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [16093] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2
#> [16129] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [16165] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 1 5 5 5 5 1 5 5 1 1
#> [16201] 5 5 5 5 5 3 3 5 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1
#> [16237] 5 5 5 5 5 5 3 4 3 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [16273] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [16309] 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [16345] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 3 3
#> [16381] 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 3 3 3 5 5
#> [16417] 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [16453] 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [16489] 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [16525] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3 5 5
#> [16561] 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 5 5 5 5 3 3 3 5 5 5 5 5 5 5 1 1 1 1 1 1
#> [16597] 1 1 1 1 1 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [16633] 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
#> [16669] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [16705] 1 1 1 1 1 1 5 1 1 5 5 5 5 5 5 5 3 5 3 3 3 3 3 5 5 5 5 5 5 1 1 1 1 1 1 1
#> [16741] 1 1 1 1 1 1 5 5 5 3 3 3 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 1 1 1 1 5 1 1 1 1
#> [16777] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
#> [16813] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#>
#> Within cluster sum of squares by cluster:
#> [1] 2986.731 5393.798 4165.963 8693.721 4258.384
#> (between_SS / total_SS = 69.7 %)
#>
#> Available components:
#>
#> [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
#> [6] "betweenss" "size" "iter" "ifault"
co$tmax
raster is used as a template for the new raster.values()
function is used to set the values of the new raster to NA.The values()
function is used to assign the cluster labels to the new raster to all cells that DID NOT have an NA value in the origional data.
The plot()
function is used to visualize the new raster with a color palette.
# Get elevations data
elev = elevatr::get_elev_raster(AOI, z = 5) %>%
crop(AOI) |>
rast()
#> Mosaicing & Projecting
#> Note: Elevation units are in meters.
# Align Raster extents and resolutions
elev = project(elev, co$ppt)
# Extract Values
values = c(co$ppt, elev) %>% values()
# Prep data
idx = which(!apply(is.na(values), 1, any))
v = na.omit(values)
vs = scale(v)
# Cluster
E = kmeans(vs, 5, iter.max = 100)
clus_raster_elev = elev
values(clus_raster_elev) = NA
clus_raster_elev[idx] <- E$cluster
summer <- rast(getTerraClim(counties, params, startDate = "2023-07-01")) |>
exact_extract(counties, "mean", progress = FALSE)
fall <- rast(getTerraClim(counties, params, startDate = "2023-10-01")) |>
exact_extract(counties, "mean", progress = FALSE)
winter <- rast(getTerraClim(counties, params, startDate = "2023-01-01")) |>
exact_extract(counties, "mean", progress = FALSE)
tidyverse
readr
)dplyr
, tidyr
)ggplot2
, flextable
)EDA
, visdat
, skimr
, janitor
)purrr
)tidymodels
framework for the “Whole Picture”
lubridate
)feasts
, fable
, tsibble
)modeltime
sf
for vector data
GDAL
, PROJ
, GEOS
dataRetrieval
for USGS dataclimateR
for climate dataAOI
for spatial dataelevatr
for elevation dataosmdata
for OSM dataThank you for your time and attention this semester!
Thank you for your patience:
I hope you learned something new and useful.
I’m always available as a resource after this class (mikecp11@gmail.com).
Please fill out the course evals and let me know how I can improve.
If you found the content relevant to your career, and something you believe should be part of your curriculum (either as this class or as a year-long course), please let the department know!
I’ll be around for the next few weeks if you have any questions about your final project or anything else.