
Variables, Loops, and debugging

mike johnson

OVERVIEW

1. Variables and their primitive types

2. Practice problems to declare, manipulate
and print variables

3. Learn to import an existing program file

4. Look at the syntax and logic of the for and
while loop

5. Launch and navigate the Eclipse
Debugger

Week 2

Contents

1. Variables

Week 2

What are Variables??

• Variables reserve space in memory
• So, creating a variable is reserving a set amount of

memory space, and defining what can be stored
there…

• Every variable is made up of three components:

(1) A type – i.e. how much memory to save
(2) A name – i.e. what it’s called (human reference)
(3) A value – what it represents or is equal to

• An example: int x = 100;

• Here we are creating an integer value called
x that is equal to 100

Variables

Week 2

Primative Variable Types

• In Java there are 8 types of primitive variables

• Each of these reserves a different length of
space in memory AND allows different types of
data to be stored.

• These are predefined by Java and are
represented by a key word type:

1.Byte
2.Short
3. Int
4.Long
5.Float
6.Double
7.Char (character)
8.Boolean (true/false)

Variables

Week 2

Variable Types

1.Byte
• 8-bit signed two's complement integer
• Minimum value: -128 (-2^7)
• Maximum value: 127 (inclusive)(2^7 -1)
• Default value is 0
• Byte data type is used to save space in large arrays, mainly in place of

integers, since a byte is four times smaller than an integer.

2. Short
• 16-bit signed two's complement integer
• Minimum value: -32,768 (-2^15)
• Maximum value is 32,767 (inclusive) (2^15 -1)
• Short data type can also be used to save memory as byte data type.
• A short is 2 times smaller than an integer
• Default value is 0.

Variables

Week 2

Variable Types

• Int
• 32-bit signed two's complement integer.
• Minimum value is - 2,147,483,648 (-2^31)
• Maximum value is 2,147,483,647(inclusive) (2^31 -1)
• Integer is generally used as the default data type for integral values

unless there is a concern about memory.
• The default value is 0

• Short
• 64-bit signed two's complement integer
• Minimum value is -9,223,372,036,854,775,808(-2^63)
• Maximum value is 9,223,372,036,854,775,807 (inclusive)(2^63 -1)
• This type is used when a wider range than int is needed
• Default value is 0L

Variables

Week 2

Variable Types

• Float
• Single-precision 32-bit IEEE 754 floating point
• Float is mainly used to save memory in large arrays of floating point

numbers
• Default value is 0.0f
• Float data type is never used for precise values such as currency

• Double
• Double-precision 64-bit IEEE 754 floating point
• This data type is generally used as the default data type for decimal

values, generally the default choice
• Double data type should never be used for precise values such as

currency
• Default value is 0.0d

Variables

Week 2

Variable Types

• Boolean
• One bit
• Two possible values: true (1) and false (0)
• This data type is used for simple flags that track true/false conditions
• Default value is false

• Char
• Single 16-bit Unicode character
• Minimum value is '\u0000' (or 0)
• Maximum value is '\uffff' (or 65,535 inclusive)
• Used to store any SINGLE character
• A variable type ‘String’ must be used to store multiple

characters

Variables

2. Examples

Download / Load Sample Code for this week

Option 1) If you have cloned the classes repo, be sure to pull the new data

Complete Workflow:

Do once:
> cd … working directory…. ## Enter the location you want the repo to go
> git clone https://github.com/mikejohnson51/geog178.git ## Clone (copy the repo) into that location ‘

To Update:
> cd ./geog178. ## Enter the new geog178 folder (your local repo)
> git pull origin ## Pull new files from the origin page

Option 2) Download the zip file from the course page

2. Examples

Importing an Existing Project

• Open an Eclipse workspace on your flash drive
or local desktop

• Go to: File à Import à General à Existing

Week 2

Importing • Select ”Select root directory”

• Click ‘Browse’

• Point it to the ‘Week2_examples’ folder

• Click ‘Finish’

Week 2

Importing an Existing Project

• Select ”Select root directory”

• Click ‘Browse’

• Point it to the downloaded folder

• Click ‘Finish’

Importing

• Under the src folder of the imported project you should see
the examples for today. Don’t open them yet!!

• Create a new class called `My_Example1`

Week 2

Importing

Importing an Existing ProjectImporting an Existing Project

Week 2

Java…Where is UCSB??
(simple program)

• Using what we now know about variables write a
program that prints the following statement using
variables and comments.

• In this program make location name, lat and
long variables variables that can be changed

• (Answer on the next slide and in Example1.java)

Example #1

Week 2

Where is UCSB (simple program)

Example #1

Week 2

How far is your high school from UCSB?
(more complex program)
• If Example 1 was easy, try to calculate the distance

between two points:
Where you went to (1) high school and (2) UCSB:

• Look up the lat, long of your high school in decimal
degrees
• E.g.: I went to Cheyenne Mountain in Colorado Springs, Colorado
• Lat: 38.8031 Lon: -104.8572

• We will use the Haversine formula to determine the
distance between these locations. To do this we will need to
find functions and/or do the following:

• Create a new class (My_Example2) and copy the contents of My_Example1
• Convert decimal degrees to radians
• Determine the differences in lat and long between locations
• Apply the equation (see hyperlink) using the Java math package
• Print out your answer!

Example #2

https://community.esri.com/groups/coordinate-reference-systems/blog/2017/10/05/haversine-formula

How far is your high schools from
UCSB??

Give it a try!
• (Answer on the next slide and in

Example2.java)

Week 2

Example #2

Haversine
formula:

Angles must be in radians!!

a = sin²(ΔLAT/2) + cos (LAT1) ⋅ cos (LAT2) ⋅ sin²(ΔLNG/2)

c = 2 ⋅ atan2(√a, √(1−a))

d = 6,371 ⋅ c

How far is your high school from UCSB?
(more complex program)

Week 2

Example #2

How far is your high school from UCSB?
(more complex program)

Week 2

• Validation using ArcMap

• Percent Difference:
• [885.3545	−	884.2627)	/	885.3545]	* 100 = .12%

Example #2

Validation?

Week 2

What's the minimum??

Example #3

Create a new class called My_Example3.java

Create four double variables to store the
latitudes of the four busiest airports:

ATL = 33.6407
BEJ = 40.0799
DXB = 25.2532
LAX = 33.9416

Using Math.min()…. Produce the statement:

“The lowest latitude of the
worlds four busiest airports is _____”

3. Loops

Week 2

Loops

What are Loops??

• Loops are sequences of instructions
to be continually repeated until a
specific condition is reached.

• They are helpful when checking for a
condition or when repeating the same
process over a large amount of data
points…

• Anytime you want to do something
many times a loop will be helpful!

Week 2

Loop Logical Flowchart

Loops

0. Starting with i = ??? (typically 0)

2. Do this!!

3. Add X to i
think i++1. Check if binary

condition is TRUE,
- Or –
do while Binary

condition is TRUE

2. END

Week 2

For Loops and While Loops

• FOR LOOP SYNTAX

• WHILE LOOP SYNTAX

Loops

Week 2

Building Loops
(Example Code with comments…)

Example #4

3. Debugging

Week 2

Debugging

Debugging

• It is very easy, and natural, to make mistakes when
programing

• There are several ways to find mistakes:

1. Visually
2. Working/reading the program backwards
3. Debugging

• In Eclipse, debugging allows you to run a
program INTERACTIVLY (much like R or
python) while watching the source code and the
variables as it executes

• Eclipse provides a ‘Debug Perspective’ loaded
with a pre-confined set of VIEWS to help do this

• It will also allow you to control the execution flow
through embedded ‘debug’ commands.

Common Mistakes to watch for:

1.Missing Semicolons

2. Typos

3.Wrong Variable Types

4.Uneven brackets, parentheses, etc.

5.Missing package extensions

Week 2

Debugging

Week 2

Starting the debugger

• To begin debugging a Java File Right click on the ‘Example4.java’
file and select:

• Debug As à JavaApplication

Debugging

Week 2

Adding/Removing Breakpoints

• Breakpoints are locations in the source code, created by you,
where the program should stop during debugging.

• Once the program stops, you can examine variables, change their
content, among other things.

• Break points can be added and removed in two ways:

1. Right clicking on a line number and selecting “Toggle Break Point”

2. Having you cursor on a line and holding down ‘Ctrl +Shift + B”
For MAC user anytime a shortcut is given, replace Ctrl with command

• When a break point is added successfully a ‘blue dot’ will appear

Line number

Debugging

Week 2

Debugging

Starting the debugger

• If you have not defined any break points the continue programing normally.
Remember that debugging will ONLY work if breakpoints have been assigned!

• When BREAKPOINTS are assigned (add a breakpoint to the for loop print
message by RIGHT clicking on the respective line number)

• Run the debugger (clicking on the ‘bug’) for the desired file…

The Debugger Perspective

Once you enter the Debugger Perspective
you will see the following:Week 2

Debugging
Call Stack Execution Control Variable View Breakpoint View

Week 2

Call Stack

The Call Stack

• The call stack is displayed in the DP

• The call stack shows the parts of your program which are currently
executed and how they relate to each other

• Clicking on one element of this stack switches the editor view to
display the corresponding class, and the "variables" view will
show variables of this stack element.

Execution Control

• In the “Debugging Perspective” Eclipse allows you to control the
execution of a program.

• The Following shows how these commands work in addition to
there keyboard shortcuts:

• F8 à Tells the Debugger to resume the execution of the program
code until it reaches the next break point.

F8 STOP F5 F6 F7

• F5 à Executes the currently selected line.
• F6 à Executes a method – or ‘steps-over’ a call without stepping

into the debugger (MOST USEFULL!!)
• F7 à ‘Steps out’ to the caller of the currently executed method

Week 2

Debugging

Always Terminate your debugger when done!!

Week 2

Breakpoint
View

The Breakpoint View

• This view port allows you to delete, deactivate and modify
properties of breakpoints.

• You can deactivate a breakpoint by unselecting the check box
next to each or….

• You can delete them using the corresponding buttons in the
toolbar.

Activate/Deactivate
Breakpoint

Delete all or one
Breakpoint(s)

Week 2

Variable
View

Variable View

• The Variables Viewport shows the fields and local variables from
the current executing stack.

• You must run the Debugger (click on the little bug in the toolbar) to
see the variables in the view!

• This is a good place to make sure all variable are initializing and
are representing what you think they should…

Week 2

Variable
View

Variable View

• In the Variable Veiwport, you can use the Drop-Down Menu to
display static variables TYPES

Week 2

Variable
View

Variable View

• The Variables Viewport also allows you to change the value of
each static variable before resuming!

• Do this by double clicking (or right clicking on the value box)

Go ahead and use the execution control to get
a sense of the debugger and the for loop:

1. Step into methods and back out
2. Execute lines
3. When done, TERMINATE!

Your Turn

• Together, lets take some time to fix the
Example5_buggy file. Do not open the
debugged file yet!!

Week 2

Example 5

Debugging Practice

Week 2

Example 5

First, get the program to run by fixing the issues
indicated by red X’s….

Problems once its running L

• Once Example3_buggy.java is running lets look
at what is is suppose to do!

• This code is written to:

A) select a random number of values (1-10)
B) determine how many coordinate pairs can be made (P)
C) determine what kind of geometry can be formed by P
D) print out a pseudo WKT string

• Run the code a few times:

Good !!

Bad !!
1
POINT
POINT [X, Y]

Week 2

Example #3

Why does this happen??

Problems once its running L

Week 2

Example #5 Where does the logic fall apart?

Use any of your tricks to find the error(s?)

Why did we do this??

• In this example you first fixed broken code and then
work to correct WORKING by BUGGY code…

• The idea is to be comfortable exploring a new program
(or your own) in the debugger to both find errors AND
familiarize yourself with it.

• Even though you did not write this the sample code
you should have a good understanding of the variables
and steps executed after using the debugger….

• A debugged solution can be found in
Example3_debugged.java

Week 2

Big
Picture

Summary:

At this point you should be comfortable:
1. Launching a workspace and creating a Java Project in

Eclipse

2. Importing a program from the class website, github, or your flash

3. With the different types of variables, their uses, and howto
declare them

4. Manipulating variables with the ‘Math’ package and print
statements

5. Writing, and reading, for and while loops in your program

6. Opening and navigating the Debugger (this will become valuable when our
programs get more complicated)

If you have any questions please don’t hesitate to email of
visit office hours!

Week 2

END:

Homework hints …
• Part 2: Define POINT()s and determine the distance between them?

• How is a POINT() defined?
• What components are needed?

• How many POINT()s do you need to compute a distance operation?
• How is distance in Cartesian space determined?

Homework hints …

Homework hints …
• Part 3a: Define a LINESTRING()…

• What are the minimum number of POINTS()s needed to define a LINESTRING() ?

• Part 3b: Define a POLYGON()…
• What is the minimum number of unique POINT()s needed to define a POLYGON() ?
• What is the minimum number of POINT()s needed to initialize a POLYGON() ?

• How many unique POINT()s are needed to define a valid LINESTRING() and POLYGON() ?

Homework hints …

Homework hints …
• Part 4: Is the POLYGON() closed … aka … is it a valid geometry??

• Think of this is building your own error handling
• What conditional statement is needed to generate a warning like:

Homework hints …

