
GEOG 178/258
Week 3:

Arrays, Objects and Classes

mike johnson

Recap:
• Workspace: the top level directory

• /Users/mikejohnson/geog178

• Project: a single folder where all related code lives and is compiled from
• /Users/mikejohnson/geog178/week3/

• Package: collection of pieces of code that can be shared together
• /Users/mikejohnson/geog178/week3/chair_ex

• Src: where the code YOU write (.java files) lives
• /Users/mikejohnson/geog178/week3/chair_ex/src/

• Bin: where source code is compiled to
• /Users/mikejohnson/geog178/week3/chair_ex/bin

• Class: the type of files that you create (for now J) – MORE ON THIS TODAY!
• /Users/mikejohnson/geog178/week3/chair_ex/src/chair

• Public: This declares public access to a member across a package

• Void: This means that a method has no return value

• Main: the part of the code that will execute.
• It is a static method meaning it is part of its class and not part of objects.
• Its what compiled code looks for to run

1. Arrays

Week 3

Arrays

So far…

• So far we have looked at initializing variables as single
values:

• For example int x = 10
• creates an integer called x that is equal to 10

• Sometimes we want a collection of data to be stored
together.

• Examples of this might be:

1. Large data tables or matrices
2. Lat, Long Pairs
3. Yearly values (Jan, Feb, March values)
4. A list of any sort
5. What can you think of??

Week 3

Arrays

What is an Array??

• An array acts as a ‘container’ object to hold a fixed number of
values of the same type!

• When an array is initialized the type of data it can contain AS
WELL as the length must be established!

• In an array, each item is called an element, and the below
diagram highlights how Java interprets an array

Week 3

Arrays

Creating an array…

1. Initializing an array is similar to initializing a
variable with one difference:

Int[] testArray; // An array of integers is declared

2. The length of the array is then specified:

testArray = new int[10];
// memory reserved in testArray for 10 integers

// be sure to include the ‘new’, its significance will be covered soon…

3. Elements can then be set using the numerical
indexof the array:

testArray[0] = 10; // first element set to 10 testArray[1] = 20;
// second element set to 20

...

4. Remember that Java is a 0 referenced language. This means the
first entery of an array is indexed at 0 NOT 1.

Week 3

Arrays

Challenge!!

1. Create an array that takes a pair of lat, long
points for UCSB
• The coordinates for UCSB are:

• Latitude: 34.41
• Longitude: -119.84

2. Print: “The Latitude of UCSB is 34.41.”
using your array…

3. Print an empty line:

4. Print: “The Longitude of UCSB is - 119.84.”
again, using your array…

5. Optional: Print the location of UCSB as WKT…
“UCSB is located at …”

Week 3

Arrays

Solution

Looks good right?!

Week 3

Arrays

Solution

What is that??

That is the class name ([D)
and System.identityHashCode() separated by the '@'
character.

The identity the hash code represents is implementation-
specific but is often the initial memory address of the object.

Since the object can be moved in memory by the VM (not by
the ‘code’) over time, you can't rely on it being anything.

Week 3

Memory
Addresses

Memory Addresses

https://docs.oracle.com/javase/8/docs/api/java/lang/System.html

• Is Java pass by value or pass by reference? What does that mean?

• This question has its origin on C and C++ where you can pass a
function parameter either by value or by memory address
(pointer).

• Per Java’s specification, everything in Java is pass by value whether
its primitive value or objects
• Java doesn't support pointers or pointer arithmetic!

• Many programmers confuse reference with pointers. Reference is a
type of handle which helps locate or change an object, but it
doesn’t allow you to ”work-on” the pointer (e.g. you cannot
increase or decrease a memory address to locate a
different object)
• Java is always pass-by-value. Unfortunately, when we pass the

value of an object, we are passing the reference to it. This is
confusing…. More to come at the end!!

Week 3

Call by value VS call by reference PARTI

Value or
Reference?

http://javarevisited.blogspot.com/2012/12/what-is-object-in-java-or-oops-example.html

2. Objects

Week 3

Objects

What is Java??... OOP

• Java is an Object-Oriented language, or Object-Oriented
Program (OOP)

• As such, it has the following characteristics:

1. Organized around ‘objects’ rather than ‘actions’
2. Organized around ‘data’ rather then ‘logic’

• OOP’s care about the objects we want to manipulate rather
then the logic that manipulates them.

• Other languages are often viewed viewed as a logical
sequence to process input data and produces output data.
(Think R or instances of MatLab)

Week 3

Objects

What is an OBJECT??

• An OBJECT has states and behaviors
• States are conditions (think long-term/identity)

• The apple is (red, yellow, green, big, 1/2, whole, …)
• The door is (wood, metal, glass, heavy, thin, …)
• The chair is (recliner, rocker, leather, soft, hard, …)

• Behaviors are ‘actions’ (think short-term)

• The apple is (hanging, falling, ripe, rotten, wet, …)
• The door is (open, closed, broken, working, …)
• The chair is (reclined, empty, taken, …)

• Objects are like the things we interact with everyday, there
are millions and millions of objects and trying to code that
into a computer language would prove very difficult…

3. Classes

Week 3

Classes

What is a CLASS??

• One of the first jobs of an OOP is to identify the objects that
• need to be modeled,
• what defines them,
• and how they relate to each other.

• This is known as data modeling
• Once an OBJECT is identified it can be generalized into its core components…

• In Java this generalized form is a CLASS.

• It describes the relevant states and behaviors
• Defines the kind of data it contains and the logical sequences that

can manipulate it
• It provides methods for getting and changing these states and

behaviors
• Each logic sequence in a class is known as a method.

Week 3

Classes

The Blueprints within Java

Ways to think of Classes….

• In Java classes are templates for describing an object….

• It is the generic form of an object and describes what it
“means to be that object”

• It is an object with “Open Variables”

• It is a form that needs to be filled out …

In Class Chair Example

• Consider a chair…

• If I ask you to think of a chair, each of you knows what I am
talking about.

• If I asked you to sit in a chair you won’t mistakenly sit on a
table.

• If I asked you to build me a chair you would all be able to.

• Given there are so many type of chairs, how do you all
know what I am taking about???

Week 3

Classes

• If ‘chair’ is to have a definite meaning there must be something
common to ALL chairs…

• The thing that is common to all chairs is considered “the form of
the chair”

• The form of the ‘chair’ allows people to
communicate:

Week 3

Classes

In Class Chair Example

Week 3

Classes

So…

An object is a specific instance of a more general idea
deconstructed into a sum of parts

If you look around the class you see that all your peers are
’people’. None of us are ‘aliens’, ’dogs’ or ‘cats’.

However your brain can also detect characteristics that make
each of us unique, and specific 'objects' of the class ‘people’.

For example we all have a gender, hair color, age, race, and
occupation, ect that make us unique.

All ’people’ have these things (this is the class people), and
each object (individual) has a unique make up of these
general qualities.

Week 3

Classes

So…

Class/ the “Form of a Person”:
person (“gender”, ”age”, ”hair color”, “occupation”, “eye color”)

Object/ Individauls:
person mike = new person (male, 27, brown, grad student, green)

Mike is a person who is a male, grad student with brown hair
and green eyes…

person jane = new person(female, 24, black, teacher, brown)

Jane is a person who is a female teacher with black hair and brown
eyes…

Week 3

Classes

Why are CLASSES important?

• Classes make it possible to define subclasses of data objects that
share some or all class characteristics. This feature is known as
inheritance.

• The concept of data classes allow programmer’s to create new data
types that are not pre-defined in the language.

• Class definitions are reusable by both the program it was created for
and other OOP’s. This allows them to be distributed more easily
across networks.

• Classes define only the data it is concerned with. Thus when an
instance of that class (an OBJECT) is run, the code will not accidently
access other program data. This avoids unintended data corruptions
AND enhances system security.

LIVE EXAMPLE

3. Practice

Week 3

Practice
Problem

Example:

In this example we will do the following:

1.Create a class called point

2.Construct the general form of point

3.Create a method in the point class

4.Create two points using the point
class

5.Call on the point method to perform
an operation

Week 3

Practice
Problem

Example:

1. Open a new project and create a class called ‘Point’

2. Do NOT elected to create a ‘main’ string.

Week 3

Practice
Problem

1. Creating a point class

Line 2: Creates a new public class called ‘Point’
Line 4: Sets aside space to define the attributes of a point
Line 6: Sets aside space to define the constructors of a point
Line 8: Sets aside space to define the getters of a point
Line 10: Sets aside space to define the setters of a point
Line 12: Sets aside space to define the methods of a point
Line 15: Closes the point class

Week 3

Practice
Problem

2. Defining the attributes

Line 6: Declares that all points are comprised of values X and
Y (doubles)

Week 3

Practice
Problem

3. Defining the constructor

Line 9: Defines a new public method called Point that takes an input x and y
value (doubles) and assigns them to an internal X,Y to that point.

Week 3

Practice
Problem

4. Defining the “getters”

Getters allow you (and the program) to access elements of a class

Line 16: Defines a new public method, that can be applied to
any object of class point, that returns a double, called getX().
When run, getX() returns the ‘x’ value associated with the
object it is called on.

Line 20: Does the same for y.

Week 3

Practice
Problem

5. Defining the “setters”

Setters allow you (or the program) to modify the attributes of an object

Line 26: Creates a public method, that has no return value
called setX(). SetX() requires an input double ‘x’ and sets that
values within the point constructor to the new x value, ‘this.x’.

Line 30: Does the same for y

Week 3

Practice
Problem

6. Add an method to the point class
* Return a point as a WKT string

Line 36: Creates a public method called toWKT() that
returns a String. This method uses the ‘x’ and ‘y’ values of
the Point object it is called on to populate the returned string.

Week 3

Practice
Problem

7. Add another method
* Calculate the area between two points

Line 40: Creates a public method called area() that returns a double. This
method requires a user supplied x and y (doubles) and computes the area between
them and the x (this.x) and y (this.y) values of the Point object it is called on.

Week 3

Practice
Problem

8. Duplicate Methods for Robust Classes
* Calculate distance between two points

Line 44: Creates a public method called area() that returns
a double. This method requires a user supplied Point and
computes the area between it (p.x, p.y) and the x (this.x)
and y (this.y) values of the Point object it is called on.

Week 3

Practice
Problem

9. Create Points using the point Class:

Line 7: Creates a new point object in the same way as a
principle type in the main() method:

Type(point) name(P1) = new value (x,y)

The addition is that the value needed is a set of integers as
defined by the class and the addition of the ‘new’ statement. By
doing this Java is creating a new object and attaching the
reference to that object within the variable.

Line 9: Prints a description of point1 using the toWKT() method
Line 10: Prints a description of point1 using direct access
Line 11: Prints a description of point1 using our getters

Week 3

Practice
Problem

Test our code, apply our methods:

1. chair myChair = new chair(“Leather");

2. arg(myChair); // Do this function

3. public void arg(chair someChair) {

4. someChair.setType(“wood”);
5. someChair = new chair(”plastic");
6. someChair.setType(”fabric");
7. }

Line 1: Create a Chair object at memory address 1
Line 2: Run method arg using myChair (1) as input
Line 3: Create a methods ‘arg’ that takes an input of type chair
Line 4: the input ‘myChair’ is followed to the address of the input (1)

the chair (1) is changed from “leather” to “wood”
Line 5: A new plastic chair is created and stored at memory (2), the parameter name ‘someChair’ to the Chair (2)
Line 6: someChair is followed to the chair object at memory (2), that specific chair is changed to type fabric.
Line 7: Return.

What would myChair.getType() return????

Week 3

Arrays

Call by value VS call by reference PART II

ANSWER: “Wood”

Remember that myChair is a pointer not a chair.

myChair is still located at memory (1) and still
pointing to the ‘original’ chair.

Here we followed an address and changed what's at the end
of it. We DID NOT change the variable.

Week 3

Arrays

Call by value VS call by reference PART II

• In languages that support pass-by-reference (C++, Ada,
Pascal), you can change the variable that was passed.

• If Java had pass-by-reference semantics, the arg method
would have changed where myChair was pointing when it
assigned someChair on line 5.

• Then myChair would be located at memory(2)

Week 3

Arrays

Call by value VS call by reference PART II

Week 3

HW #2

HW 2 Hints

1. Define a Point class (look at these notes)

2. Define a BoundingBox class
> Think of the attributes, constructors, getters, setters needed

3. Add a distance method to the Point class
> Make this robust (take and XY, and a PT)!

4. Add an isInside method to BoundingBox
> Make this robust!

5. Test your code !!
> Be sure to think of unique instances that

might break your code and test to make sure
they don’t

