
GEOG 178/258
Week 4:

ArrayLists, Delegation, and Randomization

mike johnson

Recap
• If statement
• For loop
• Main method

• Classes/objects
Member attributes
Constructors (auto-generate)
Getters Setters (auto-generate)
Methods

• Point
• Bbounding Box

• Arrays
• ArrayLists (import package)

Recap
• If statement
• For loop
• Main method

• Classes/objects
Member attributes
Constructors (auto-generate)
Getters Setters (auto-generate)
Methods

• Point
• Bbounding Box

• Arrays
• ArrayLists (import package)

Recap
• If statement
• For loop
• Main method

• Classes/objects
Member attributes
Constructors (auto-generate)
Getters Setters (auto-generate)
Methods

• Point
• Bbounding Box

• Arrays
• ArrayLists (import package)

•The main() method is the entry point into the application.
•The signature of the method is always: public static
void main(String[] args)
•Command-line arguments are passed through the args
parameter, which is an array of String s. We do not deal
with these!!

Recap
• If statement
• For loop
• Main method

• Classes/objects
Member attributes
Constructors (auto-generate)
Getters Setters (auto-generate)
Methods

• Point
• Bbounding Box

• Arrays
• ArrayLists (import package)

Recap
• If statement
• For loop
• Main method

• Classes/objects
Member attributes
Constructors (auto-generate) (this vs. that)
Getters Setters (auto-generate)
Methods
Access

• Point
• Bbounding Box

• Arrays
• ArrayLists (import package)

Recap
• If statement
• For loop
• Main method

• Classes/objects
Member attributes
Constructors (auto-generate) (this vs. that)
Getters Setters (auto-generate)
Methods
Access

• Point
• Bbounding Box

• Arrays
• ArrayLists (import package)

Recap
• If statement
• For loop
• Main method

• Classes/objects
Member attributes
Constructors (auto-generate) (this vs. that)
Getters Setters (auto-generate)
Methods
Access

• Point
• Bbounding Box

• Arrays
• ArrayLists (import package)

Recap
• If statement
• For loop
• Main method

• Classes/objects
Member attributes
Constructors (auto-generate) (this vs. that)
Getters Setters (auto-generate)
Methods (duplication)
Access

• Point
• Bbounding Box

• Arrays
• ArrayLists (import package)

Recap
• If statement
• For loop
• Main method

• Classes/objects
Member attributes
Constructors (auto-generate) (this vs. that)
Getters Setters (auto-generate)
Methods (duplication)
Access

• Point
• Bbounding Box

• Arrays
• ArrayLists (import package)

Recap
• If statement
• For loop
• Main method

• Classes/objects
Member attributes
Constructors (auto-generate)
Getters Setters (auto-generate)
Methods

• Point
• Bbounding Box

• Arrays
• ArrayLists (import package)

Recap
• If statement
• For loop
• Main method

• Classes/objects
Member attributes
Constructors (auto-generate)
Getters Setters (auto-generate)
Methods

• Point
• Bounding Box

• Arrays
• ArrayLists (import package)

Recap
• If statement
• For loop
• Main method

• Classes/objects
Member attributes
Constructors (auto-generate)
Getters Setters (auto-generate)
Methods

• Point
• Bbounding Box

• Arrays
• ArrayLists (import package)

Zero Index, Same Type, Fixed Length

Recap
• If statement
• For loop
• Main method

• Classes/objects
Member attributes
Constructors (auto-generate)
Getters Setters (auto-generate)
Methods

• Point
• Bbounding Box

• Arrays
• ArrayLists (import package)

An ArrayList is a re-sizable array, also called a dynamic array. It
grows its size to accommodate new elements and shrinks the size
when the elements are removed. ArrayList internally uses
an array to store the elements. Just like arrays, It allows you to
retrieve the elements by their index.

import java.util.ArrayList; // Must be imported!

Zero Index, Same Type, Flexible Length

Established “operations” or methods that can
be done on the ArrayList class

Delegation
• Passing your work (a duty) over to

someone/something else.

• When you delegate, you are simply calling up some
class which knows what must be done. You do not
really care how it does it, all you care about is that
the class you are calling knows what needs doing.

COVID Example

• We want to model the spread of infection between people in
neighborhoods

• We will focus on 1 neighborhood
• People occupy some point in the neighborhood and cannot move
• People are either infected (state = 1) or not-infected (state = 2)
• At the beginning only 1% of the population is infected.

• Premise:
Unaffected people within 6 feet (Cartesian space) of an infected
person become infected

Model

• Neighborhood

• People

Model

• Neighborhood
• (Area)

• People (n = 20)
• (location, infected-state)

Model

• Neighborhood
• (Area) -- >
• bounding box!

• People
• (location, infected-state) -->
• point!

What else do we need?

• Is a person within 6 feet of another?
• Choice: Is this a person method or a point method?

• Randomness (model initialization)!
• Where people are
• Are they infected?

Random
Numbers in

Java

Math.random()
• Gives you a random double between 0 and

1 (e.g. .6503939429)
• Includes 0, Excludes 1 !!

• double rand = Math.rand();
• Each time you run it, you get a different

number between 0-1 (1 not included)

Random Numbers between a range?

• Lets say we want random numbers between 5-10

• Math.random() * (max – min)
(rand * 5) à returns the value in range of 0-5 where 5 is not included
(0 * 5) = 0
(.9999 * 5) = 4.9995

• Math.random() * (max – min) + min (exclusive)
(rand * 5) + 5 à returns the value in range of 5-10 where 10 is not included
(0 * 5) + 5 = 5
(.9999 * 5) + 5 = 9.9995

• Math.random() * (max – min + 1) + min (inclusive)
(rand * 6) + 5 à returns the value in range of 5-10 where 10 is included
(0 * 6) + 5 = 5
(.9999 * 6) + 5 = 10.9994

Random Int (introduction to casting data type)

• Here we need to cast a double to an int
• Casting a double to an integer is the equivalent to floor()
• (int) 6.9999999999999 = 6

• Int rand = (int) (Math.random() * ((max – min + 1) + min));

Lets work it out

Start a new project.

• Copy in your point and bbox class from last week
• Create 3 new classes
• Person
• Neighborhood
• Test (add a main method here!)

• Example code that follows with be color coded (border) according to these.

Make a Person class
• What defines a person in the contexts of this model?
• Do attributes like hair color, eye color, name matter?

THIS THIS THISor

Attributes of person

Line 3: We create a public class called person
Line 6: All person(s) have a point attribute, called location, that is only accessible to the class
Line 7: All person(s) have an integer attribute, called location, that is only accessible to the class

Constructors create specific objects of class person

Line 9: this is the constructor because the name matches the class. It is public and requires the user to supply a point an integer
Line 10: Ignore this for now
Line 11: Assign the input point to the location of THIS specific person being created any time the constructor is applied
Line 12: Assign the input integer to the state of THIS specific person being created any time the constructor is applied

Provide Getters and setters for member variables

Line 15-17: A public method called getLocation that returns a point. That point is the location of the object it is applied to
Line 19-21: A public method called setLocation that takes an input point and assigns it to the location of THIS person

it is applied to and returns nothing (void)
Line 23-25: A public method called getState that returns an integer. That integer is the state of the object it is applied to
Line 27-29: A public method called setState that takes an input integer and assigns it to the state of THIS person

it is applied to and returns nothing (void)

Now lets make a neighborhood!
• What do we know about

neighborhoods?
• What is the minimal yet

sufficient amount of information
to describe a neighborhood?

============================

• They have an area
• And they have some number of

people (group of many
“person”)

Attributes of a Neighborhood

Line 3: Imports the ArrayList library
Line 5: We create a public class called neighborhood
Line 8: Define an open member variable of type bbox called bb
Line 9: Define an open ArrayList member that can hold objects of type person, we call this ArrayList people.

Constructors, Getters and Setters

Line 12-16: Neighborhood constructor
Line 18-20: Bounding Box getter
Line 21-23: Bounding Box setter
Line 24-26: ‘people’ getter
Line 27-29: ‘people’ setter

Remember: Right Click -> Source to
autogenerate

Delegating Methods to the ArrayList class

Line 32-34: When the size method is applied to a
neighborhood object, we expect it to return an
integer (describing the size). This method applies
the ArrayList size method to the ArrayList ‘people’.

Line 35-37: When the get method is applied to a
neighborhood object, we expect to return the
person object at the location of the input integer.
This method applies the ArrayList get method to
the ArrayList ‘people’.

Line 38-40: Apply ArrayList add to people
Line 41-43: Apply ArrayList remove to people
Line 44-46: Apply ArrayList clear to people

In all these cases we are leveraging existing
methods. We do not need to write them (or even
know how they work!) – this is delegation

Initial testing ….
Line 3: Import ArrayList
Line 5: Create a public class called test
Line 7: Create a Main method s telling jave
where to start execution
Line 9-10: Create a new bounding box called
bb from two new points
Line 12: Create a neighborhood using the bb
object and a new empty ArrayList of person(s)
Line 14: Use the delegated ‘add’ method to
add a new person to the neighborhood
located at the new point 500,500 who is
infected (state = 2)
Line 15-17: Test some methods and print the,
the the console

This is super tedious…. Lets think of a better way to allocate the X, Y and
infected states using what we know…

===

• The X and Y should be random but within the bounds of the bounding
box.

• At initiation, any individual person has a 99% chance of not being
infected and a 1% chance of being infected.

Remember back to our discussion of random allocation in Java using Math.random(). Using that logic we could generate
random X,Y and state values using the following code where max and min are dummy variables (e.g. this code will not
work if copied)

Here we chose the exclusive version meaning a person will never be on the Xmax ,Ymax edges

Lets fill in the min and max dummy variables using the
getters and setters of the bounding box object (bb)

And run some
test code!

That’s pretty nice, but lets say we want 500 people in the neighbor hood?
How would we deal with that?

Enter the “for-loop”

Here we wrap the
randomization and

person creation in a
loop that runs from 0 >

I > 500.

We then print the size of
the neighborhood and
count the number of
infected people (6/500 =
1.20%).

To those coming from functional programing languages, this looks familiar. However we want the assignment
to be part of a object/class rather then in the main method execution…. Why??

What if you wanted to make 10 neighborhoods? Then this becomes quite burdensome….

Sure we could wrap the for-loop in another for-loop but then we are neglecting the power of OOP.

===

So lets think about what new information we added and what we are doing?

We told Java to add X number of people to the neighborhood people array?

We randomly assigned locations to those people as well as an initial infection state based on a global perspective of
1% infection…

People is a member attribute of neighborhood (and so in bounding box!) so all that we needed to add as new
information was the number of people that should be and the performed randomization.

That is we created pseudo methods for addPeople() and make randPoint()

Lets move these over to classes in our model since there are
thing we want to repeatedly do….

Generating Random Points in a Bounding Box

Turning random points into infected/non-infected person objects

bbox neighborhood

My Choice… not the “right” or only one…

Why?

• randPoint is not a neighborhood specific
method but a bounding box specific method. It
is something that would be useful in other
models (say modeling invasive species, or really
any Agent-based modeling exercise)

• This is looking ahead to ideas of inheritance!

• FYI NetLogo calls this idea “Breeding turtles”
where turtles are agents.

And run
some test
code!

Homework Hints

1. Create a method that determines if a person is within X distance of
another person.

public boolean isWithin(point p1, double distance) {…}

• Is isWithin a person or a point method?

2. Create a method that counts the number of infected people in a
neighborhood at any one time:

public int numInfected(){ …}

3. In your test class, write code that checks if person(s) are within 6 feet of
infected person(s), and, if so, change their state to infected.
• You will need to use your new isWithin method, getters, setters, and delegations

• This only needs to be checked once! You do not need to move people or run
the check multiple times. When complete you should be able to print a
message like the following that changes each time its run (thanks to successful
randomization)

Homework Hints

