
GEOG 178/258
Week 5:

Overriding, Overloading, Inheritance

mike johnson

If you are feeling behind,

• Download the sample code from the class site:
• It contains a completed class for:

• Point
• Polyline
• Polygon
• Person

Set up:

Create a new project (week5) and copy over your:

Point Class Bbox Class Person Class

Before we get started lets set up for this weeks lab:

You are not alone!!

Recap
• Method Signatures

• Constructor Signatures

• Delegation

Visibility - return type – name - inputs

Recap
• Method Signatures

• Constructor Signatures

• Delegation

Visibility – Name that matches class -- Input

Recap
• Method Signatures

• Constructor Signatures

• Delegation

Visibility – Name that matches class -- Input

Delegation
• Passing your work (a duty) over to

someone/something else.

• When you delegate, you are simply calling up some
class which knows what must be done. You do not
really care how it does it, all you care about is that
the class you are calling knows what needs doing.

@Overriding

Example 1: Example 1: <class>.equals() <class>.euals()

Example 1: <class>.equals()

Example 2: ArrayList<>().contains()

Example 2: ArrayList<>().contains()

Example 3: <class>.toString()

Example 3: <class>.toString()

Overriding

In any object-oriented programming
language…

Overriding is a feature

that allows a subclass or child class to
provide

a unique implementation of a method
that is already provided

by one of its super-classes or parent
classes.

Point Class

… autogenerated (no need to type out)….

Take a couple minutes to override the toString method for your
point and bbox, and person class…

And create the equals method in your point class…

Example 4: Testing

@Overloading

Method Overloading is a feature…
that allows a class
to have more than one method using the same name,
if their argument lists (signatures) are different.

Constructors always need to populate the open member variables.
But we can provide default options.

We can also overload constructors in Java, that allows a class to have
more than one constructor having different argument lists.

https://beginnersbook.com/2013/05/constructor-overloading/

Points, Polyline,
Polygons &
Inheritance

Member Variables
w/ Overloaded constructor

Getters and setters

@Overriders

Point Methods

Class named Polyline w/
an open member variable

Create an overloaded constructor that
(A) Takes a set of points –or-
(B) Initializes an empty ArrayList of points

Autogenerate getters and setters

Class named Polyline w/
an open member variable

Auto generate delegators for the
Point ArrayList

Create an overloaded constructor that
(A) Takes a set of points –or-
(B) Initializes an empty ArrayList of points

Autogenerate getters and setters

Class named Polyline w/
an open member variable

Override the toString() method

Auto generate delegators for the
Point ArrayList

Create an overloaded constructor that
(A) Takes a set of points –or-
(B) Initializes an empty ArrayList of points

Autogenerate getters and setters

Class named Polyline w/
an open member variable

Override the toString() method

Auto generate delegators for the
Point ArrayList

Create an overloaded constructor that
(A) Takes a set of points –or-
(B) Initializes an empty ArrayList of points

Autogenerate getters and setters

Class named Polyline w/
an open member variable

Lets right a new method and revisit the for-loop

Li

Line 34: This is a public method named getLength() that returns a double and requires no input
Line 36: Initialize a double variable called distance and set its initial value to 0
Line 38: Initialize a for loop that goes from 0 to the size of the Polyline – 1
Line 39: Take the current distance value and add the distance between point i and point i+1
Line 42: When the loop finishes return distance!

Polygon vs
PolyLine?

This is a perfect opportunity to define a
Polygon class that inherits the characteristics

of a Polyline!

What do we know about Polygons and their
relation to Polylines?

Polygons are Polylines
that have an equal
start and end point

Both are simply
collections of Points.

Everything we can do
with a Polyline, we can

do with a Polygon.

Line 5: Polygon is a class that extends the Polyline Class.
This means that Polygon Inherits all aspects from Polyline and that all Polyline Methods are accessible to Polygon objects

Line 7: We still need constructors and here we overload the constructor allowing users to create empty Polygon Objects.
Line 9: Or provide an ArrayList of points that fills the open points variable of the parent (super) class Polyline

Line 12: Now we don’t want Polygons objects to inherit the toString() over rider of Polyline so we over-ride the over-ride

Let’s make a new method that looks if two
geometries are touching:

Here we make a public class called touches that take some input <…>

It initializes an integer called touch with a starting value of 0

It opens a for loop that runs along the size of the object the method is applied to (this).
It opens a conditional if statement that says:

Does the input <…> contain the first element of the the object this method is applied too (this)
If TRUE then increase ‘’touch” by 1, otherwise, do nothing

Once its all done, check if touch is greater then 0 and if so return TRUE, else return FALSE

1.What class of object should we pass as input ?
2.Where should this method go?

Put touches in
Polyline

Lets make an method in Polygon called getBB

*There are certainty arguments that this should go in Polyline, and it probably should.
But for example, we are going to keep it in Polygon…

Example 7

Our COVID simulations
• How does this all relate??

What have we done?

• We made a POINT class
• We defined a Polyline class as a collection of

points with explicit methods
• We wrote methods that check if Polylines touch
• We extended Polyline to create Polygon
• We added a Polygon method to coherce a

Polygon into a bbox object from
Polygon(Polyline) Point ArrayList

Regions
All Regions have:

1. a name
2. COVID count
3. Footprint
4. County
5. People (optional)

Some regions are cities, some are unincorporated areas:

Imagine our
real world

San Luis Obispo
County

Santa Barbara
County

• Each of these counties has a
number of regions …

These regions can be imagined
as bounding boxes, in cartision
space…

BTW does this remind you or
Projected Coordinates Systems
with false origins and unit
increments?

Goleta

SB

IV

Gaviota

Lompoc
Santa

Ynez

Pismo Arroyo Grande

San Luis

Obispo
Morro Los

Osos

Paso Robles

Cambria

Not a single shared vertex across Bbox representations!!

BBOXs are easier and more
efficient to describe, but …

We need full polygon
representations to

compare vertices ….

Pseudo-
Casting….
Put this in
the bbox

class…

Lets code together!

Remember the classes
we have discussed are

all available on the
Github page under

week5

Start by making a
Region class

Regions
All Regions have:

1. a name
2. COVID count
3. Footprint
4. County
5. People (optional)

Some regions are cities, some are unincorporated areas:

Region extends Polygon

Regions have access to Polygon and Polyline methods
Ø We can ask if regions touch (Polyline.touches())
Ø We can generate a bounding box (Polygon.getBB()
Ø We can get the length (Polyline.getLength())
Ø We can get Point Coordinates!

How?

region.get(0).getX()

We know region extends Polygon …
which extends Polyline …
Polyline is made up of an ArrayList of Points
We delegated the ArrayList method (like get) to work on this ArrayList of POINTS

So region.get(0) returns the POINT object through the REGION à POLYGONàPOLYLINE member Variable
Point objects have getters and setters to access their member variables X and Y!

• Let’s initialize our open member variables that we know all regions have:

Those included:
• A name (eg String IV)
• A county (eg String SB)
• A footprint (eg Polygon)
• A number of cases (eg int 100)
• And people (ArrayList<Person>)

• Great! lets build (autogenerate!) our constructors.
• We don’t always want to deal with the people ArrayList so lets

overload our constructor giving an option to include specify people
(Lines 23-29) or not (Lines 15-21)…

• Auto generate:
• Getters and Setters

• Delegate ArrayList methods
to ask about the people
ArrayList.
• Note that some of these

methods already apply to the
inherited Polygon(Polyline)
Points Array so we will modify
the method name!

• Override the toString print
method…

Finally, lets copy over our
addPeople method from
last weeks neighborhood…

… and modify it to work in
the contexts of the Region
Class.

Regions
All Regions have:

1. a name
2. COVID count
3. Footprint
4. County
5. People (optional)

Some regions are cities, some are unincorporated areas:

Let’s make Cities and Unincorporated Regions!

Example

Example

Let’s make a
World Class to
hold all of our
regions
Other then lines 8 and 11,
this is all autogenerated !!

Check in!
• You should have:

1. Point class (with equals override)
2. Polyline class with getLength and touches method

• Polygon class with getBB class
3. Region class with addPeople class

• City class
• Unincorporated class

4. World class

All classes should have the needed member variables, getters & setters,
delegated methods, and toString overrides

Count Cases
Lets add a method that lets us count all cases in a World Object:

Count
County
Cases

• Logic: Create an empty world object using the “default” constructor
• Loop over all counties in the world that the method is applied to
• add all counties that meet the county name constraint to the temporary world
• Apply the countCases world method to the temporary world
• Remember that tmp ”dies” when the scope of the function ends!

Let’s add a method that lets us count all cases in a World Object that match a criteria:
countyName == input

Calculate Adjacency

public World adjacent(Region r) {

World tmp = new World(); //initialize a new empty world

for (int i = 0; i < this.size(); i++) { // loop over World that this method is applied too
if(r. <…>.touches(<…>)) { // apply logic to see if the region (i) touches the input region

tmp.add(<…>); // if it does (TRUE) add the touching region to the tmp object
}

}
return tmp; // return the tmp object

}

Fill in the <…>Build a method that calculates the adjacent regions and returns a new world object

Count Adjacency Cases
Build a method that counts the cases in adjacent regions using already defined methods

Goleta
SB

IV

Gaviota

Lompoc Santa
Ynez

Pismo Arroyo Grande

San Luis
Obispo

Morro Los
Osos

Paso Robles
Cambria

At minimum make the following regions:

1. Add them to a world called CC (central coast)
2. Count cases in the CC (should be 1500)
3. Add 20,000 people to IV
4. Print the size of IV Population
5. Print the cases in IV (250)
6. Print the adjacent Regions to IV

(City Goleta, Uni. IV, and City SB)
7. Print the adjacent Regions to Santa Ynez

(City Goleta, city Santa Ynez, city AG)
8. Count the adjacent cases to IV (950)
9. Count the cases in SLO county (450)
10. Count the cases in SB county (1050)

Type Name Cases

Unincorporated IV 250

city Goleta 400

city SB 300

city Santa Ynez 100

city SLO 250

city Arroyo Grande 150

Unincorporated Los Osos 50

Homework Hints:

