GEOG 178/258
Week 6:

Interfaces, UML

Set up:

Before we get started let’s set up for this weeks lab:

Create a new project (week6) and copy over your:

Point Class Bbox Class Polyline Class Polygon Class

Recap

* Signatures
* Delegation
* Inheritance (extending a class)

e Overriding

Visibility - return type — name - inputs

2,

Visibility — Name that matches class -- Input

java.util.ArraylList;

Recap

* Signatures

. > line) {
* Delegation .line = line;

* Inheritance (extending a class)

e Overriding

(> line) {
. Line = line;

* Passing your work (a duty) over to

someone/something else (anther class!!). (index) {

line.get(index);

 When you delegate, you are simply calling up some
class which knows what must be done. You do not 1_ dé(. e) {
really care how it does it, all you care about is that st

the class you are calling knows what needs doing. O 1

line.clear();

Recap Regior .

In geography, regions are areas that are broadly
divided by physical characteristics, human impact
characteristics, and the interaction of humanity and
the environment. Wikipedia

* Signatures

e Delegation
Feedback

Morro Bay

* Inheritance (extending a class)

San Luis

* Ove rrid I ng San_Luis_Obispo,_California | Obispo
Py ;

San Luis Obispo

City in California

Baywood-Los Osos

California

Los Osos is an unincorporated community and a

San Luis Obispo is a city in California’s Central Coast census-designated place located along the Pacific

region. On Mission Plaza, the Mission San Luis coast of San Luis Obispo County, California. The

zz University x
Californiz ¥
Sanlac,Barbara
Goleta Q

Isla Vista

Isla Vista

Goleta Isla Vista

City in California Census-designated place in California

Isla Vista is an unincorporated community and

Goleta is a city in southern Santa Barbara County, census-designated place in Santa Barbara County

California, United States. It was incorporated as a city

week5;

java.util.ArraylList;

I :;‘EEE!? ‘::: iEEal {
name;
county;
footprint;
cases;
< > people;
Signatures
(name, county, footprint, cases) {
.name = name;
.county = county;
. .footprint = footprint;
Delegation e
.people = ArrayList< >();
}
. . (name, county, footprint, cases, < > people) {
Inheritance (extending a class) .name = nane;
.county = county;
.footprint = footprint;
.Ccases = cases;
I .people = people;
Overriding }
() dl QELH
(name) { .name = name; }
() { county; }
{ county) { .county = county; }
aotprin
week5;
java.util.ArraylList;
{
(name, county, footprint, cases) {
(name, county, footprint, cases);
}
(name, county, footprint, cases, < > people) {
(name, county, footprint, cases, people);
}
a0verride
() {
+ getName() + + getCounty() + + getCases()
+ + size() + :

Recap

Signatures
Delegation
Inheritance (extending a class)

Overriding

@Override

In any object-oriented programming
language...

Overriding is a feature

that allows a subclass or child class to
provide

a unique implementation of a method
that is already provided

by one of its super-classes or parent

classes.

(] -

l ——

I_.,z.?.... C—
. - isre .
-5 e
-) :
- % .
B
[] W . SEEEE SEE—

- .,. : ’ » > 11T .
- “ {Saeei) T Q More iImages

Unified Modeling Language <«

Programming language

The Unified Modeling Language is a general-purpose,
developmental, modeling language in the field of
software engineering that is intended to provide a
standard way to visualize the design of a system.
Wikipedia

“standard way to visualize
the design of a system...”

Cross Domain
(Hydrology Example)

«FeaureTypes
HY_HydroFeature

«FeaureTypes
HY_Catchment

«FeaureTypes
HY_CatchmentAggregate

«FeatureTypes
HY_DendriticCatchment

«FeaureType»
HY_InteriorCatchment

«Applicaton Schema»
HY_HydrometricNetwork

«Applicaion Schema»
HY_HydroFeature

] + NamedFeature
(] + HydroComplex
__| + RiverReferencing

«FeareTypes «FeaureType» «FeatureTypes
HY_Depression HY_WaterBody HY_HydrometricFeature
«FeaureTypes «FeatureTypes
HY_Channel HY_Canal
«FeareTypes «FeaureTypes
HY_River HY_Impoundment
«FeaureTypes «FeatureTypes
HY_Lake HY_Lagoon
«FeaureTypes
HY_Estuary

Figure 23. Hydrologic features describing separate aspects of hydrology phenomena

& +HY_HydrometricFeature
& + HY_HydrometricNetwork

«Appiication Schemax»
HY_SurfaceHydroFeature

] + ChannelNetwork

(] + HydrographicNetwork
] + WaterBodyTypes

(] + Storage

A\
7 | \
’ |
’ |
’ |
/
/ |
/ I
/ |
I
|
|
I
|
|
|
|
|
AN |
\ I
. |
\
\ |
N\ | ’
\ | Va
N 7/
\ | 7/
\ | ’
«Applicaton Schemax»

HY_Features_Hydrology_Model

Figure 20. HY Features modules and packages

https://docs.opengeospatial.org/is/14-111r6/14-111r6.html# the hy features conceptual model

https://docs.opengeospatial.org/is/14-111r6/14-111r6.html

Classes

flighthumber : Integer
departureTime : Date
flightDuration : Minutes

delayFlight { numberOfviinutes : int) : Date
getarrivalTime {) : Date

Classes are represented as rectangles with stacked compartments:
The top compartment shows the class name (Flight)

The middle: the class attributes

The last: the class operations (aka methods)

Think about how this already mirrors our structure of (Member variables, Constructors, Getters&
Setters, Methods)

Member Variables

flighthumber : Integer
departureTime : Date

’ flightDuration : Minutes
(A ttr I b u teS) delayFlight { numberOfvinutes : int) : Date

getarrivalTime () : Date

Attribute lines are optional but if included are written in the following structure:

Name : attribute type

In many “everyday” class diagrams, the attribute types usually show units that make sense to readers (i.e.,
minutes, dollars, etc.). However, a class diagram that will be used to generate code needs classes whose attribute
types are limited to the types provided by the programming language, or types included in the model that will
also be implemented in the system.

Often default values will be provided as well:

MyBank: double = 0

Operations

flighthumber : Integer
departureTime : Date

(M e th O d S) flightDuration : Minutes

delayFlight { numberOfivinutes : int) : Date
getarrivalTime () : Date

Operations (methods!) are documented as a list with the following format:
Name(parameter list) : type of value returned

(think to the signature of your methods like islnside!)

When parameters are needed the name and type should be explicitly provided:

isinside (P1 : Point, P2: Point) : Boolean

Objects
(objects)

ad 4700 : Flight

flightNumber : Integer = 4700
departureTime : Date = 8/4,/2004
flightDuration : Minutes = 240

Relationships
(Inheritance)

REVIEW: inheritance refers to the ability of one class (child class)
to inherit the identical functionality of another class (super class),
and then add new functionality of its own.

BankAccount

owner : String
balance : Dollars

deposit { amount : Dollars)
witharawa! { amownt © Dollars }

e

\

CheckingAccount SavingsAccount
insufficientFundsFee : Dollars annuallnterestRate : Percentage
processCheck { checkToProcess : Check) depositMonthlylnterest ()
withdrawal { amount : Dollars) withdrawal {amount : Dollars)

[cons

Generalization

Inheritance

Composition

Aggregation

Dependencies

Properties

Multiplicity

+
#
/

~

For Public

For Private

For Protected

For Derived

For Package

For more look here

https://www.uml-diagrams.org/class-reference.html

Example

Example() { ... }

String toString() { ... }
foo X) { +ua }
bar(Y, 2)) ol ans

Example

-X:int

#y:nt

+2z:int
+«constructor»Example()
+toString():String
-foo(x:int)
#bar(y:int,z:int):int

Putting it together

OGC Simple Feature Access

| Geometry | 0..* ASpatxaIReferenceSystem

A
| : I
Point | Curve 1‘ Surface“ | GeometryCollection |
— i] , }
1. wy A A JA
w [T L
LineString | Polygon . : .
— | MultiSurface ; ————
1 [| MultiCurve MultiPoint
X E—
A J 1..*
O

— 4T A
[] MultiPolygon MultiLineString

Geometry
Point

X() : Double
Y() : Double
Z() : Double
M() : Double

+ + + +

Figure 4: Point

6.1.4.2 Methods

— X ():Double — The x-coordinate value for this Point.
— Y ():Double — The y-coordinate value for this Point.
— Z():Double — The z-coordinate value for this Point, if it has one. Returns NIL otherwise.

— M ():Double — The m-coordinate value for this Point, if it has one. Returns NIL otherwise.

Curve
LineString

+ numPoints() : Integer
+ pointN(Integer) : Point

Figure 7: LineString
6.1.7.2 Methods
— NumPoints (): Integer — The number of Points in this LineString.

— PointN (N: Integer): Point — Returns the specified Point N in this LineString.

V)
>
O
C
O,
4
>
L]

Implements

o

Extends

Java allows classes to inherit the fields and methods
of a class. But only one class can be extended!

Example:

e ArraylList extends AbstractList
e AbstractList extends AbstractCollection.

e AbstractCollection provides methods like contains(Object o),
toArray(), remove(Object o)

e AbstractlList class provides add(), indexOf(), lastindexOf(), clear()
etc.

Some of the methods are overridden by ArrayList.

https://howtodoinjava.com/java-arraylist/

ArrayList extends AbstractList

ArrayList.java

public class ArrayList<E> extends AbstractList<E>

implements List<E>, RandomAccess, Cloneable, java.io.Serializable

/ /code

Inh eritan Ce ParentClass.java

public class ParentClass ({

Example public int dataval = 100;

public int getDataVal() {
return this.dataval;

ChildClass.java

public class ChildClass extends ParentClass

{

Main. java

public class Main

{

public static void main(String[] args)

{
ChildClass child = new ChildClass();

What will this printpp ﬁ System.out.println(child.dataval);

System.out.println(child.getDataval());

-

implements

Interfaces enforce a contract in Java.

They force the implementing class to provide a certain
behavior.

Java can implement more than one interfaces. In this case, class
must implement all the methods from all the interfaces. (or
declare itself abstract).

Look at the ArrayList class declaration one more time. It
implements 4 interfaces i.e. List, RandomAccess, Cloneable
and Serializable. It has implemented all the methods in given
interfaces.

ArrayList implements

ArrayList.java

public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable,

/ /code

java.io.Serializable

Interface
Example

Must contain move, but
doesn’t specific what
move does....

Makes move concrete,
Humans move is a certain
way. In this case by saying

“I'am moving”

Movable. java

public interface Movable {

public void move();

Swimmable. java

public interface Swimmable

{

public void swim();

}

Human. java

public class Human implements Movable, Swimmable
{
@override
public void swim() {
System.out.println("I am swimming");

}

@Override

public void move() ({
System.out.println("I am moving");

}

Main. java

public class Main

{
Human objects can swim public static void main(String[] args)

and move {
Human obj = new Human();

obj.move();
obj.swim();

omework

OGC Geometry Interface

Topological

relations <:

y

Metric
relations

Logical
composition

Geometry ReferenceSystems::
+spatialRS SpatialReferenceSystem
+ dimension() : Integer
+ coordinateDimension() : Integer 1
+ spatialDimension() : Integer
+ geometry Ty pe() : String
+ SRID() : Integer '
+ envelope() : Geometry "
+ asText() : String "
+ asBinary() : Binary E«reahz_e--
+ isEmpty () : Boolean '
+ isSimple() : Boolean :
+ is3D() : Boolean .
+ isMeasured()() : Boolean v
+ boundary() : Geometry
query «interf ace»
+ equals(another :Geometry) : Boolean ReferenceSystems::ReferenceSystem
+ disjoint(another :Geometry) : Boolean {abstract)
+ intersects(another :Geometry) : Boolean + dimension() : Integer
M+ touches(another :Geometry) : Boolean + axisName() - anﬁq/]
+ crosses(another :Geometry) : Boolean)
+ within(another :Geometry) : Boolean
+ contains(another : Geometry) : Boolean A
+ overlaps(another :Geometry) : Boolean -
+ relate(another :Geometry, matrix :String) : Boolean .
+ locateAlong(mValue :Double) : Geometry -
+ locateBetween(mStart :Double, mEnd :Double) : Geometry ‘ erealizes
analysis -
b+ distance(another :Geometry) : Distance E
+ buffer(distance :Distance) : Geometry L
+ convexHul() : Geometry ReferenceSystems::
+ intersection(another : Geometry) : Geometry +mesureRS | MeasureReferenceSystem
+ union(another :Geometry) : Geometry
+ diff erence(another :Geometry) : Geometry 0.1
+ symDifference(another :Geometry) : Geometry

OO We are going to create 2 interfaces

BOUNDINGAREA GEOMETRY

BoundingBox and pointBuffer Point, Polyline, and Polygon will
will implement BoundingArea implement Geometry

Our Geometry will ensure all geometry

Our BoundingArea will ensure all
boundingarea objects have:

objects have:

e isInside e getDiminsion
o .. e getType

e getEnvelope

e isSEmpty

e Equals

e getArea

e getLength

e touches

e numPoints

Remember, these are the method name. We need to build the contractual method signatures !!

Interface Example:

Geometry {

We need to be explicit in the methods we expect each geometry to have. Since methods can be overloaded

Notes

* This homework is very “easy” coding-wise.

* But much trickery conceptually.

* There is no right and wrong way to do things (but there are better
ways ©)

* You will reach “success” when all of you geometry types (point,
polyline and polygon) can implement meaningful geometry methods
and all of you BoundingAreas (pointBuffer and BoundingBox) can
implement meaningful BoundingAreas methods.

Group Work time

* Sean Reid is inviting you to a scheduled Zoom meeting.

Topic: Geog 178/258 Work Session
Time: May 5, 2020 07:00 PM Pacific Time (US and Canada)

Join Zoom Meeting

https://ucsb.zoom.us/j/96237624575?pwd=UnhUSEV6c1BOWHICY3|
Db2VOU2swUT09

https://ucsb.zoom.us/j/96237624575%3Fpwd=UnhUSEV6c1BOWHlCY3lDb2VOU2swUT09

Code together

