
GEOG 178/258
Week 6:

Interfaces, UML

mike johnson

Set up:

Create a new project (week6) and copy over your:

Point Class Bbox Class Polyline Class Polygon Class

Before we get started let’s set up for this weeks lab:

Visibility - return type – name - inputs

Visibility – Name that matches class -- Input

Recap
• Signatures

• Delegation

• Inheritance (extending a class)

• Overriding

Delegation

• Passing your work (a duty) over to
someone/something else (anther class!!).

• When you delegate, you are simply calling up some
class which knows what must be done. You do not
really care how it does it, all you care about is that
the class you are calling knows what needs doing.

Recap
• Signatures

• Delegation

• Inheritance (extending a class)

• Overriding

Delegation

Recap
• Signatures

• Delegation

• Inheritance (extending a class)

• Overriding

Delegation

Recap
• Signatures

• Delegation

• Inheritance (extending a class)

• Overriding

Overriding

In any object-oriented programming
language…

Overriding is a feature

that allows a subclass or child class to
provide

a unique implementation of a method
that is already provided

by one of its super-classes or parent
classes.

Recap
• Signatures

• Delegation

• Inheritance (extending a class)

• Overriding

@Override

UML

“standard way to visualize
the design of a system…”

Cross Domain
(Hydrology Example)

https://docs.opengeospatial.org/is/14-111r6/14-111r6.html#_the_hy_features_conceptual_model

https://docs.opengeospatial.org/is/14-111r6/14-111r6.html

Delegation

Classes are represented as rectangles with stacked compartments:

The top compartment shows the class name (Flight)

The middle: the class attributes

The last: the class operations (aka methods)

Think about how this already mirrors our structure of (Member variables, Constructors, Getters&
Setters, Methods)

Classes

Attribute lines are optional but if included are written in the following structure:

Name : attribute type

In many “everyday” class diagrams, the attribute types usually show units that make sense to readers (i.e.,
minutes, dollars, etc.). However, a class diagram that will be used to generate code needs classes whose attribute
types are limited to the types provided by the programming language, or types included in the model that will
also be implemented in the system.

Often default values will be provided as well:

MyBank: double = 0

Member Variables
(Attributes)

Operations (methods!) are documented as a list with the following format:

Name(parameter list) : type of value returned

(think to the signature of your methods like isInside!)

When parameters are needed the name and type should be explicitly provided:

isInside (P1 : Point, P2: Point) : Boolean

Operations
(Methods)

Objects
(objects)

REVIEW: inheritance refers to the ability of one class (child class)
to inherit the identical functionality of another class (super class),
and then add new functionality of its own.Relationships

(Inheritance)

For more look here

Icons

https://www.uml-diagrams.org/class-reference.html

Example

Putting it together

Extend vs
Implements

Extends

☇
Java allows classes to inherit the fields and methods
of a class. But only one class can be extended!

Example: ArrayList class:

• ArrayList extends AbstractList
• AbstractList extends AbstractCollection.

So ArrayList(s) have methods and behaviors of both
AbstractList and AbstractCollection.
• AbstractCollection provides methods like contains(Object o),

toArray(), remove(Object o)
• AbstractList class provides add(), indexOf(), lastIndexOf(), clear()

etc.

Some of the methods are overridden by ArrayList.

https://howtodoinjava.com/java-arraylist/

ArrayList extends AbstractList

What will this print??

Inheritance
Example

implements

Interfaces enforce a contract in Java.

They force the implementing class to provide a certain
behavior.

Java can implement more than one interfaces. In this case, class
must implement all the methods from all the interfaces. (or
declare itself abstract).

Look at the ArrayList class declaration one more time. It
implements 4 interfaces i.e. List, RandomAccess, Cloneable
and Serializable. It has implemented all the methods in given
interfaces.

ArrayList implements ….

Interface
Example Must contain move, but

doesn’t specific what
move does….

Makes move concrete,
Humans move is a certain
way. In this case by saying

“I am moving”

Human objects can swim
and move

Recap

extends is used to inherit a class

implements is used to inherit the interfaces.

A class can extend only one class; but can
implement any number of interfaces.

A subclass that extends a superclass may override
some of the methods from superclass.

A class must implement all the methods from
interfaces.

Homework

OGC Geometry Interface

We are going to create 2 interfaces

BOUNDINGAREA GEOMETRY

BoundingBox and pointBuffer
will implement BoundingArea

Point, Polyline, and Polygon will
implement Geometry

Our BoundingArea contract will ensure all
boundingarea objects have:

• isInside
• ...

Our Geometry contract will ensure all geometry
objects have:

• getDiminsion
• getType
• getEnvelope
• isEmpty
• Equals
• getArea
• getLength
• touches
• numPoints
• …

Remember, these are the method name. We need to build the contractual method signatures !!

Interface Example:

We need to be explicit in the methods we expect each geometry to have. Since methods can be overloaded

Notes

• This homework is very ”easy” coding-wise.
• But much trickery conceptually.
• There is no right and wrong way to do things (but there are better

ways J)
• You will reach “success” when all of you geometry types (point,

polyline and polygon) can implement meaningful geometry methods
and all of you BoundingAreas (pointBuffer and BoundingBox) can
implement meaningful BoundingAreas methods.

Group Work time

• Sean Reid is inviting you to a scheduled Zoom meeting.

Topic: Geog 178/258 Work Session
Time: May 5, 2020 07:00 PM Pacific Time (US and Canada)

Join Zoom Meeting
https://ucsb.zoom.us/j/96237624575?pwd=UnhUSEV6c1BOWHlCY3l
Db2VOU2swUT09

https://ucsb.zoom.us/j/96237624575%3Fpwd=UnhUSEV6c1BOWHlCY3lDb2VOU2swUT09

Code together

