GEOG 178/258
Week 7:

Polygons, GUIs, draw™**

What would be the most useful section?

22 responses

&

@ Standard Slides and Live coding until we
run out of time (| guess well get through
2)

@ No slides and live coding until we run
out of time (| guess well get though 3)

@ Slides and talking through examples
until we run out of time (well get through
3)

@ No slides and talking through all
examples (well get through 4)

Polygons:

In the above assertions, interior, closure and exterior have the standard topological definitions. The combination
of (a) and (c) makes a Polygon a regular closed Point set. Polygons are simple geometric objects. Figure 11
shows some examples of Polygons.

a) b) C)
Figure 11: Examples of Polygons
with 1 (a), 2 (b) and 3 (c) Rings, respectively

6.1.11.1 Description

A Polygon is a planar Surface defined by 1 exterior boundary and 0 or more interior boundaries. Each interior
boundary defines a hole in the Polygon. A Triangle is a polygon with 3 distinct, non-collinear vertices and no
interior boundary.

The exterior boundary LinearRing defines the “top” of the surface which is the side of the surface from which the

exterior boundary appears to traverse the boundary in a counter clockwise direction. The interior LinearRings will
have the opposite orientation, and appear as clockwise when viewed from the “top”,

The assertions for Polygons (the rules that define valid Polygons) are as follows:
a) Polygons are topologically closed;
b) The boundary of a Polygon consists of a set of LinearRings that make up its exterior and interior boundaries;

c) No two Rings in the boundary cross and the Rings in the boundary of a Polygon may intersect at a Point but
only as a tangent, e.g.

Polygon

Surface

+
+
<+

exterorRing() : LineString
numlinteriorRing() : Integer
interiorRingN(Integer) : LineString

6.1.11.2 Methods

A\

Triangle

Figure 13: Polygon

— ExteriorRing (): LineString — Returns the exterior ring of this Polygon.

— NumlinteriorRing (): Integer — Returns the number of interior rings in this Polygon.

*Surface Interface
* Inherits from Triangle

— InteriorRingN (N: Integer): LineString — Returns the N™ interior ring for this Polygon as a LineString.

WKBTriangle ({
byte
static uint32
uint32
LinearRing

WKBTriangleZ ({
byte
static uint32
uint32
LinearRingZ

WKBTriangleM ({
byte
static uint32
uint32
LinearRingM

WKBTriangleZM {
byte
static uint32
uint32
LinearRingZM

byteOrder;
wkbType = 17;
numRings;

rings [numRings] }

byteOrder;
wkbType = 10 17;
numRings;

rings [numRings] }

byteOrder;
wkbType = 20 17;
numRings;

rings [numRings] }

byteOrder;
wkbType = 30 17;
numRings;

rings [numRings]}

If we use the extends

keyword

We are in

neriting (like

genes) the classes and

methods
class

‘rom a parent

If we use the
implements keyword

WEEIGCK: il &
contract that must be
meet

Classes and Objects Define Pieces of Code that we can use

When java compiles we can build instances of classes:

Main methods tell Java how to
compile elements into something
that runs, prints, executes, ect

Up until now we have been piping all of our
output — as text - to the console using

System.out.print*

instead, we want to direct our output to a new
graphic window using Java swing components

Here is a nice picture
It is static

It is an arrangement of parts
including:

A) A racoon
B) Text

This is a button

It is part of the picture WRT to what
we want to see

To function as a button:

It must also listen to the picture
(clicks)

What happens when we click the
button must also be define!

Actions are a common entity in Java
GUIs. Therefore to ensure
consistency. listeners are added by
implementing

The actionlListener interface

/\

A,

WZR)

|
/\

=

S
(?

|
/\

A“’,

TS T T S S T2

A picture without a home
can not be displayed.

If we want to display a
picture on the computer
we need a frame to hold it

Just like a real frame,

We need to “pack” our
picture in the frame,

And

Mount it on the wall
(make visible)

/\

A,

E
<
@

|
/\

/\

ZNNGDNG,

|
/\

({1

L“’DL“’DL“”)L“”)L“’DL“UI

If a change is instigated in
the picture,

We don’t need to take
down the frame, unpack
the elements, and re-
draw...

We simply need to
repaint!

So lets think about the whole system

* We need a panel (class with member variables!)
* We need to define how the panel is painted

* We need to add buttons (or any Jcomponent) to the panel with
appropriate listeners

* We need to define what the buttons do by syncing Boolean
conditions (more on that in examples)

* We need to load an instance of our panel into a frame within a main
method.

Frame

Buttons Panel Packed panels
Listeners paintComponent visibility option

SNCSNCSNCSINCSINGR)

Buttons are both part of panels AND listen to panels
Panels are painted (or repainted) and go in frames
Frames pack panel objects, have visibility, and need to be able to close

Now how do we paint a Panel?

We rely on the draw* methods of the Swing

Lets look at one here:

fillRect

public abstract void fillRect(int x,
int vy,
int width,

int height)

Fills the specified rectangle. The left and right edges of the rectangle are at x and x + width - 1. The top and bottom edges are at y and y + height - 1. The resulting rectangle covers an area width pixels wide by
height pixels tall. The rectangle is filled using the graphics context's current color.

Parameters:
x - the x coordinate of the rectangle to be filled.
y - the y coordinate of the rectangle to be filled.
width - the width of the rectangle to be filled.
height - the height of the rectangle to be filled.
See Also:

clearRect(int, int, int, int), drawRect(int, int, int, int)

Unfortunately this is pretty obnoxious compared to our geometry objects, so lets look at a trick to make our lives
easier through examples!!

Events and Listeners
O000eo

Assignment

Display an open 'polygon’ on your panel and implement a button

that will perform a buffer snap if the first and last points are within a Example 2
given threshold (to correct overshoots and undershoots)

Display geometries on your panel and implement a button that

generates (and displays) a bounding box around each individual Example 3
geometry (GEOG 178/258) and all geometries. (GEOG 258 only)

Develop your code in a way that hides the specific Java graphics Example 1

details (i.e., don't use Poind2D, etc for your model classes).

Read chapter 16, 9, and chapter 15 (only the part on events)
Remember we saw this

Explain in 2-3 sentences what null is. ,)
in our points!!

Upload a zip file [LNTWS.zip] with the *java files to GauchoSpace.

Assignments and executable programs are due the day before
lecture at Spm PST of each week.

GUI | and ActionListeners K. Janowicz

