GEOG 178/258
Week 2:

Variables, Debugging, and Loops

mike jonnson

OVERVIEW

Week 2 Variables and their primitive types

Practice problems to declare., manipulate
and print variables

Contents

Learn to import an existing program file

Launch and navigate the Eclipse Debugger

Look at the syntax and loqgic of the for and

while loop

1. Variables

What are Variables??

Week 2

Variables

Variables reserve space in memory

So, creating a variable is reserving a set amount of
memory space, and defining what can be stored
there...

Every variable is made up of three components:

(1) A type — i.e. how much memory to save
(2) Aname —i.e. what it'’s called (human reference)
(3)A — what it represents or is equal to

An example: int x = ,

Here we are creating an integer value called
that is equal to

Primative Variable Types

In Java there are 8 types of primitive variables

2 Each of these reserves a different length of
Week space in memory AND allows different types of
data to be stored.

Variables These are predefined by Java and are
represented by a key word type:
Byte
Short
Int
Long
Float
Double
Char (character)

Boolean (true/false)

Variable Types

Week 2

Variables

Byte

8-bit signed two's complement integer
Minimum value: -128 (-27)

Maximum value: 127 (inclusive)(277 -1)
Default value is O

Byte data type is used to save space in large arrays, mainly in place of
integers, since a byte is four times smaller than an integer.

Short

16-bit signed two's complement integer

Minimum value: -32,768 (-215)

Maximum value is 32,767 (inclusive) (2*15 -1)

Short data type can also be used to save memory as byte data type.
A short is 2 times smaller than an integer

Default value is O.

Variable Types

Int

32-bit signed two's complement integer.
Week 2 Minimum value is - 2,147,483,648 (-2"31)
Maximum value is 2,147,483,647(inclusive) (2*31 -1)

Integer is generally used as the default data type for integral values
unless there is a concern about memory.

variables The default value is 0

Short

64-bit signed two's complement integer
Minimum value is -9,223,372,036,854,775,808(-2"63)
Maximum value is 9,223,372,036,854,775,807 (inclusive)(2"63 -1)

This type is used when a wider range than int is needed
Default value is OL

Variable Types

Float

Single-precision 32-bit IEEE 754 floating point

Week 2 Float is mainly used to save memory in large arrays of floating point
numbers

Default value is 0.0f
Float data type is never used for precise values such as currency

Variables

Double

Double-precision 64-bit IEEE 754 floating point

This data type is generally used as the default data type for decimal
values, generally the default choice

Double data type should never be used for precise values such as
currency

Default value is 0.0d

Variable Types

Boolean

One bit

Week 2 Two possible values: true (1) and false (0)
This data type is used for simple flags that track true/false conditions
Default value is false

Variables

Char

Single 16-bit Unicode character

Minimum value is \u0000' (or 0)

Maximum value is "\uffff' (or 65,535 inclusive)
Used to store any SINGLE character

A variable type ‘String’ must be used to store multiple
characters

2. Examples

Download / Load Sample Code for this

week

Option 1) If you have cloned the classes repo, be sure to pull the new data

Complete Workflow:

Do once:
> cd ... working directory.... ## Enter the location you want the repo to go
> git clone https://github.com/mikejohnson51/geog178.git ## Clone (copy the repo) into that location *

To Update:
> cd ./geogl78. ## Enter the new geog178 folder (your local repo)
> git pull origin ## Pull new files from the origin page

@
Option 2) Download the zip file from the course page .

Week 2: OGC, Variables, Debugging, Loops .

Example Code

Importing an Existing Project

Open an Eclipse workspace on your flash drive

or local deskto
Week 2 P

Go to: File - Import - General - Existing
Debugging

Select "Select root directory”

Click ‘Browse’

Point it to the ‘Week2 examples’ folder

Click ‘Finish’

Importing an Existing Project

Select "Select root directory”

Week Click ‘Browse’

Debugging Point it to the downloaded folder on your desktop

3 [) Import
Import Projects
| Select a directory to search for existing Eclipse projects
4 -
Select root directory: |t /geog178/sample_ _examples Browse

t Select archive file
3
1 Projects
1

Week2 (/Users/s /geog78/sample_code/Week2_examples) Select All
1 Deselect All
1
H Refresh
1
H

Options

Search for nested projects
1
) Copy projects into workspace
1 Close newly imported projects upon completion

Hide projects that already exist in the workspace
t .

Working sets

1
' Add project to working sets New.
f
i Working sets:

< Back Cancel

Click ‘Finish’

Importing an Existing Project

Week 2

Debugging

Under the src folder of the imported project you should see
the examples for today. Don’t open them yet!!

(- Project Explorer $3 —| S - = m
:‘-:' practice
v_——' Week2
Fsrc
2 (default package)
|4 Example1.java
|43 Example2 java
|44 Example3_buggy.java
|43 Example3_debugged.java
B\ JRE System Library |

Create a new class called 'My_Example1”

Where is UCSB (simple program)

Using what we now know about variables write a
program that prints the following statement using
Week 2 variables and comments.

UCSB is located at 34.4139 degrees latlitude and -119.8489 degrees longitude.

Example #1

In this program make location name, lat and
long variables variables that can be changed

(Answer on the next slide and in Example1.java)

Where is UCSB (simple program)

Week 2

Example #1

public class locations {

public static void main(String[]

o 1]
3
o
("
) S
U i

// Location of interest given as a String variable
String locl = "UCSB";
// The latitude of Location 1 given as a double variable
double latl = 34.4139;

/ The longitude of Location 1 given as a double variable
double lonl = -119.8489;

/A print statement is used to combine our three variables

"

System.out.print(locl + " is located at " + latl +
" degrees latitude and " + lonl + " degrees longitude.");

(S

&) Console 52 X %

<terminated> locations [Java Application] C:\Program Files (x86)\Java\jrel.8.0_40\bin\javaw.exe (Jan 9, 2017, 6:32:02 PM)
UCSB is located at 34.4139 degrees latitude and -119.8489 degrees longitude.

How far is your high school from

UCSB? (more complex program)

Week 2

Example #2

If Example 1 was easy, try to calculate the distance
between two points:

Where you went to (1) high school and (2)
UCSB:

Look up the lat, long of your high school in decimal
degrees

E.g.: went to Cheyenne Mountain in Colorado Springs,
Colorado

Lat: 38.8031 Lon: -104.8572

We will use the Haversine formula to determine
the distance between these locations. To do this we
will need to find functions and/or do the following:

Create a new class (My_Example2) and copy the contents of
My Example1

Convert decimal degrees to radians

Determine the differences in lat and long between locations
Apply the equation (see hyperlink) using the Java math package
Print out your answer!

https://community.esri.com/groups/coordinate-reference-systems/blog/2017/10/05/haversine-formula

How far is your high schools from

UCSB??

Week 2

Example #2

(Answer on the next slide and in
Example2.java)

How far is your home from UCSB?

(Example Code)

Example Code:

public class locations2 {

2 public static void main(String[

Locations of int st g

Week

String locl
String loc2 = "Cheyenne Mountain";

Thi

double latl = Math.toRadians(34.4139);
lat2

double lat2 = Math.toRadians(38.8031); Enter your
Example #2 i gt i i e s
double lonl = Math.toRadians(119.8489);
double lon2 = Math.toRadians(104.8572); Enter your data
Determine change in lat and lor locations

double d_lat th.abs(lat2 - latl);
double d_lon = Math.abs(lon2 - lonl);

double a = Math.pow(Math.sin(d_lat/2),2) + (Math.cos(latl) * Math.cos(lat2) * Math.pow(Math.sin(d_lon/2),2));
double ¢ = 2 * Math.atan2(Math.sqrt(a), Math.sqgrt(1-a));

To get the distance in miles we multiply by the radius of the earth - 3,961 miles
double d = 3961 * c;
used to provide our answer

" High School is " + d + " miles from " + locl);

A print statement is

System.out.print(loc2 +

-

Output:

o2

(2! Problems @ Javadoc |& Declaration) Console i3

<terminated> locations2 [Java Application] C:\Program Files (x86)\Java\jrel.8.0_40\bin\javaw.exe (Jan 10, 2017, 9:41:29 AM)
Cheyenne Mountain high school is 884.2627872649119 miles from UCSH|

How far is your home from UCSB?

(more complex program)

Validation using ESRI ArcGIS

Week 2

==
se5 (R 5
38378
23]

ment (Geodesic)
: 885.354537 Miles
: 885.354537 Miles
Example 1! 2 CMHS

Percent Difference:
[885.3545 — 884.2627) / 885.3545] *100 = .12%

3. Debugging

Debugging

Week 2

Debugging

It is very easy, and natural, to make mistakes when
programing

There are a number of ways to find mistakes:

Visually
Working/reading the program backwards

Debugging

In Eclipse, debugging allows to run a program
INTERACTIVLY while watching the source code
and the variables as it executes

Eclipse even provides a ‘Debug Perspective’
loaded with a pre-confined set of VIEWS to help do

this

It will also allow you to control the execution flow
through embedded ‘debug’ commands.

Common Mistakes to watch for:

Missing Semicolons

Week 2
Typos

Debugging Wrong Variable Types
Uneven brackets, parentheses, etc.

Missing package extensions (i.e ‘Math.’)

Debugging Practice

Open Example3 _buggy.java

Week 2 . .
ee In this example we do the following:

Example #3

Create breakpoints
Open the “debugging perspective” (DP)
Execute code in the DP

Edit Variables and breakpoints in DP

Problem:

Open Example3 buggy.java

This code is written to:
Week 2

A) select a random number of values (1-10)
Example #3 B) determine how many coordinate pairs can be made (P)

C) determine what kind of geometry can be formed by P
D) print out a pseudo WKT string

Run the code a few times:

Number of Values = 8
Number of pairs = 4 "
Geometry Type = POLYGON Good !!

POLYGON [87, 15, 64, 97, 70, 28, 93, 94]

Number of Valués = 2
Number of pairs = @ 1

Geometry Type = INVALID POINT Bad !!
INVALID [] POINT [X, Y]

Adding/Removing Breakpoints

Week 2

Debugging

Breakpoints are locations in the source code, created by you,
where the program should stop during debugging.

Once the program stops, you can examine variables, change their
content, among other things.

Break points can be added and removed in two ways:

Right clicking on a line number and selecting “Toggle Break Point”

= 8 |J] Welcome,java 22 | |J] Hwl.java

2 public class Welcome {

. - public static void main(String[] args) {
Line number q c Banlaca 123! with 173 an 252 depending
©® Toggle Breakpoint Ctrl+Shift+B |
Disable Breakpoint Shift+Double Click

Having you cursor on a line and holding down ‘Ctrl +Shift + B”
For MAC user anytime a shortcut is given, replace Ctrl with command

When a break point is added successfully a ‘blue dot’ will appear

11 //Define two points

q 912 int x1 = 5; // choose any point manually
13 int x2 = 9;
1A Twmd 1T D

Add a break point to lines 9, 14, 22, 34, 45

Starting the debugger

To begin debugging a Java File Right click on the
‘Example3_buggy.java’ file and select:

Week 2 Debug As - JavaApplication

{5 Project Explorer $3 == ¥ =08 [J] Example3_buggy.java 53
(=2 practice 1 import java.util.Arrays;
4> Week2 2
b @ orc public class Example3_buggy {
] 2 (default package) 58 public static void main(String[] args) {
[} Example1 java 6
|2} Example2 java 7 String geom; //initialize geometry string
J ! .
= > New > 9 int Min = 1; minimum valu 1
14 [“mp‘f’*' 0 int Max = 10; // maximum v 10
B\ JRE SystemLib open Type Hierarchy Fa 11 e lenoth X))
Show In W > :, int length = Min + (int)(Math.random() * ((Max - Mi
Open F3 14 System.out.printn("Number of Values = " + length);
Open With > 15 . _
16 int pairs = length / 2; // How many pairs are there
Copy *C 18 if(pairs % 2 1= @) { // If there is an odd number
i Copy Qualified Name pairs = pairs - 1 ;
T Paste ®’V
% Delete ® System.out.println("Number of pairs = " + pairs); /
24 if(pairs == 1) {
Build Path 4 i geom = "POINT"; // if one pair declare a POINT
Source X3S 3 } else if(pairs == 2) {
2 2 geom = "LINESTRING"; if two pairs declare a
Refactor T > } else if (pairs >= 3){
geom = "POLYGON"; if three or more pairs dec
Import... } else {
Export... geom = "INVALID";
Refresh F5 System.out.printn("Geometry Type = " + geom); p
References > int[] coords = new int[pairsx2]; initialize an a
Declarations > for(int i=0; i < pairs x 2; i++) {
@ Coverage As > coords[i] = (int) (Math.random() * 100); // fil
Q Run As > =
£l | y(geom + " " + Arrays.toString(coo
Restore from Local History... X
T ~ Debtlug Configurations...
Compare With > A7
Replace With > 18 }
v Validate

Properties %l

Starting the debugger

If you have not defined any break points the continue programing
normally. Remember that debugging will ONLY work if breakpoints
have been assigned!

Week 2
When BREAKPOINTS are assigned, and the DEBUGGER is run

Eclipse will ask if you want to switch to the Debugger Perspective.

Debugging Select 'YES’

dl\l’\l\ mesna dha "haDAAds ane' banl c;m dha "Makh! waclianna

Confirm Perspective Switch
' This kind of launch is configured to open the Debug perspective when it suspends.

This Debug perspective is designed to support application debugging. It

n! incorporates views for displaying the debug stack, variables and breakpoint
n management.
{" Do you want to open this perspective now?

d
1¢

Remember my decision

th
a No [Yes |

Starting the debugger

The Debugger can also be launched and

Week 2 executed from the Top Toolbar!

5 0)60-Q &5 -

i 2 hello_world -
Debugging 772 hllo.wor
Debug As > Example3_buggy {

Debug Configurations...

Organize Favorites... tatic void main(String[] args)

String geom; //initialize geometry

int Min = 1; // minimum values = 1

The Debugger Perspective

Once you enter the Debugger Perspective
you will see the following:

Week

Variable View
Call Stack

Execution Control

Brea k Points View

Debuggin

Source Refactor Navigate Search Project Run Window Hel|

@ Eclipse File Edi 7 B = 99%[#) Mon6:23PM Q @ =

@ [J

|4 GEOG_178 - Debug - Part2/src/Hilh clipse
(mij H O QR BB A
4 Debug X = = [m] t
v [7] Example3 (1) [Java Application] Name Value
{2 Example3 at localhost:53085 args String[0] (id=15)
7 o Thread [main] int at line 14 in basin "Sacto Inflow-Shasta" (id=16)
= Example3.main(String[]) line: 14 PPT_mm 1786.0
po [Library/Java/. ir ines/jdk1.8.0_112.jdk/C in/java (Jan 16, 2017, 6:21:28 PM) QAF 494686.11
Area_ft2 12243766501
[J] Example3.java 5% = B Z= outline ¢ =8
LA PN
public class Example3 { @, Example3
public static void main(String[] args) { © ° main(String[]) : void
//What Basin will we look at:
String basin = "Sacto Inflow-Shasta";
//Known Data
double PPT_mm = 1786;// 30 year average PPT data in mm (Spatial Average from PRISM)
double Q_AF = 494686.11 ;// 30 year average Discharge data from DWR in acre-feet
long Area_ft2 = (long) 12243766501L; //Area of Watershed in square feet
// Convert PPT to a volume
» double PPT_ft = (PPT_mm * .00328);
lonag PPT_ft3 = (lona) (PPT_ft * Area_ft2):
B Console 5% | &) Tasks ® x bl 2EE #2E-5= 80

Example3 (1) [Java lication] /Library/Java/. i i jdk1.8.0_112.jdk/Contents/Home/bin/java (Jan 16, 2017, 6:21:28 PM)

P95 @R i=%"3I HomEmy

Execution Control

In the “Debugging Perspective” Eclipse allows you to control the
execution of a program.

Week 2 The Following shows how these commands work in addition to
there keyboard shortcuts:

Debugging S O 3D _R

F8 STOP F5 F6 F7

F5 - Executes the currently selected line.

F6 = Executes a method — or ‘steps-over’ a call without stepping
into the debugger (MOST USEFULL!)

F7 = ‘Steps out’ to the caller of the currently executed method

F8 = Tells the Debugger to resume the execution of the program
code until it reaches the next break point.

The Call Stack

The call stack is displayed in the DP

Week 2 The call stack shows the parts of your program which are currently
executed and how they relate to each other

Clicking on one element of this stack switches the editor view to
ca" StaCk display the corresponding class, and the "variables" view will
show variables of this stack element.

%5 Debug 33 ¥ =08

[T] Example3_buggy [Java Application]
: Example3_buggy at localhost:64547
#® Thread [main] (Suspended)
= <obsolete method in<unknown declaring type>>
;,,' [Library/Java/JavaVirtualMachines/jdk1.8.0_161.jdk/Contents/Home/bi
[T] Example3_buggy [Java Application]
: Example3_buggy at localhost:64574
1 Thread [main] (Suspended)
= <obsolete method in<unknown declaring type>>
;,,' [Library/Java/JavaVirtualMachines/jdk1.8.0_161.jdk/Contents/Home/bi
[T] Example3_buggy [Java Application]
: Example3_buggy at localhost:64584
1 Thread [main] (Suspended)
= Example3_buggy.main(String[]) line: 45
;,,' [Library/Java/JavaVirtualMachines/jdk1.8.0_161.jdk/Contents/Home/bi

The Breakpoint View

This view port allows you to delete, deactivate and modify
properties of breakpoints.

Week 2 You can deactivate a breakpoint by unselecting the check box
next to each or....
Breakp0|nt You can delete them using the corresponding buttons in the
- toolbar.
View
Delete all or one
Activate/Deactivate Breakpoint(s)
Breakpoint
T
A)= ables ®g Breakpoints 53 &CxprPions = |
&R ::. \Q\ 4+ = : J @ ~

2 Example3_buggy [line: 9] - main(String[])
2 Example3_buggy [line: 14] - main(String[])
2 Example3_buggy [line: 22] - main(String[])
2 Example3_buggy [line: 34] - main({String[])
@ hello_world [line: 7] - main(String[])

Variable View

The Variables Viewport shows the fields and local variables from
the current executing stack.

Week 2 You must run the Debugger (click on the little bug in the toolbar) to
see the variables in the view!
Variable This is a good place to make sure all variable are initializing and
= are representing what you think they should...
View
(%)= Variables 33 ©g Breakpoints &< Expressions - A
Name Value
[+ printin() returned {No explicit return value)
& args String[0] (id=15)
5 Min 7
5 Max 10
& length 7
& pairs 8
5 geom "POLYGON" (id=30)
9 coords {id=36)

Variable View

Week 2

Variable
View

In the Variable Veiwport, you can use the Drop-Down Menu to
display static variables

w Help 7 B $ = 100% @ Mon6:27PM Q @ =

rt2/src/Example3.java - Eclipse

v Elv %5 (5v Oy 3 1
()= Variables $% ' ©g Breakpoints s 8

Name Value Layout >

“ args

O basin 5" Show Constan

© PPT_mm ® S 7 ables
O QAF £ Show Qualified Names
— v Show Null Array Entries

G Show References
Java Preferences...

Variable View

The Variables Viewport also allows you to change the value of
each static variable before resuming!

Week 2 Do this by double clicking (or right clicking on the value box)
va riable (%)= Variables 52 ©g Breakpoints &< Expressions 1 i i |
Name Declared Type Value

View G+ printin() returned void {No explicit return value)

5 args String|] String[0] (id=15)

5 Min int @

5 length int

& pairs int 8

5 geom String "POLYGON" (id=30)

(& coords int[] (id=36)

Variable View

The viewport also allows you to customize what
Is displayed for each variable. For example say

Week 2 you wanted to know the TYPE:

Go: Layout - Select Columns = Type

T ST
) @ []
\G
3 Select the columns to display
H

rlara » BDATMTIA
Select Columns

Nam
- Declared Typ
Value
Actual Type
Ge Instance ID
Instance Count
- 1 nt i
I ew rs
)
O (0= Variables 33 @ Breakpoints 6 Expressions =
Name Value Vertical | b
G+ printin() returned (No explicit return value) ;- Horizontal
® args String[0) (id=15) ot
5 Min 7 . "
® Max 10 ! i- Variables View Only
5 length 7 - Select All Deselect Al
L v [[] Show Columns
5 pairs 8
=
® geom "POLYGON" (id=30)
d (id=36) @ c

3) e
(%)= Variables §2 ©g Breakpoints &9 Expressions BE ¥ = O
Name Declared Type alue

[+ printin() returned void No explicit return value)
5 args String(] tring[0] (id=15)

5 Min int

& Max int 0

5 length int

5 pairs int

& geom String POLYGON" (id=30)

5 coords int[] id=386)

Your Turn

Take some time to fix the broken logic in
Example3 buggy.java

Week 2
You can do this:

Example 3 .
1. Visually
2. With the debugger

3. By hand
4. 772

Why did we do this??

In this example you worked to correct
WORKING by BUGGY code...

Week 2 The idea is to be comfortable exploring a new

i program (or your own) in the debugger to both
Big find errors AND familiarize yourself with it.
Picture

Even though you did not write this the sample
code you should have a good understanding
of the variables and steps executed after
using the debugger....

A debugged solution can be found in
Example3 debugged.java

What are Loops??

Loops are sequences of instructions
Week 2 to be continually repeated until a
specific condition is reached.

Loops
They are helpful when checking for a
condition or when repeating the same
process over a large amount of data
points...

Anytime you want to do something
many times a loop will be helpful!

For Loops and While Loops

FOR LOOP SYNTAX
Week 2 dition
for (ir:t i =0; i<16 - i++f{
// Loop statements to be executed
Loops }

WHILE LOOP SYNTAX

9 Boolean test expression '7
6 Loop Body

while (condition)

{

9 statement;
Bracesl—
statement;

Loop Logical Flowchart

Week

Loops

1. Check if binary
condition is TRUE

(or do while Binary

condition is TRUE

Initialization 0. Starting with i
3.Add Xto i Increment/Decrement
- Operator
A
TRUE—» Group of Statements
2. Do this!!
FALSE
¢ 2. END

Exit From the Loop]

At this point you should be comfortable:

Launching a workspace and creating a Java Projectin
Week 2 Eclipse on both your machine AND a lab machine

Importing a program from the class website, github, your
flash, ora partners flash

The different types of variables, their uses, and howto
declare them

Manipulating variables with the ‘Math’ package and print
statements

Writing, and reading, for and while loops in your program
and others

Opening and navigating the Debugger (this will become
valuable when our programs get more complicated)

If you have any questions please don’t hesitate
to email of visit office hours!

