
GEOG 178/258 -- WEEK 4:

TO BE, OR NOT TO BE …
MIKE JOHNSON

Week 4

Private v.
Public

PRIVATE VS. PUBLIC

• Avoid public fields except for constants. (Many of the examples in the tutorial use
public fields. This may help to illustrate some points concisely, but is not
recommended for production code.) Public fields tend to link you to a particular
implementation and limit your flexibility in changing your code.

*Where are the member of the Alpha Class accessible

Tips on Choosing an Access Level:

If other programmers use your class, you want to ensure that errors from misuse
cannot happen. Access levels can help you do this.

•Use the most restrictive access level that makes sense for a particular member.
Use private unless you have a good reason not to.

Week 4

Example

THE ‘FAMOUS’ QUESTION…

• The question “To be or not to be….” was first
asked in Shakespeare’s Hamlet.

• How can we:
(A) model this question,
(B) model a human asking it, and
(C) model a debate of the question

• Lets assume that “To be” is the primary argument
(TRUE) and “Not to be” is the secondary
argument (FALSE).

• Lets also assume the question is fluid and every
time it’s debated its state changes.

• We’ll also assume humans will change their mind to
sync with reality after a debate

• Lets also assume that this question can only be
asked so many times before it becomes pointless…

Week 4

Example

TO START

• Create a new Java Project in a workspace
under Week 4

• In this project file create three Java Classes

• 1) Question
• 2) Human
• 3) Test

1. QUESTION CLASS

Week 4

Question
Class

Class and constructors

Line 1: Here we create the class Question

Line 3: We state that all questions have a lifetime. That is, a number of times it can be
asked before it becomes useless. Here this value is declared as a private so
it can not be set or changed outside of the ‘blackbox’ of the class Question.

Line 4: All questions (in this model) also have a binary TRUE or FALSE condition. Again
this variable is private as we don’t want an outside entity to change the state of the
question.

Line 6-9: CONSTRUCTOR here we require a user to provide a lifetime and state of the
question.

Week 4

Question
Class

Getters and setters

Line 11 - 13: Here we create a getter method for lifetime (a public method
that returns a integer)

Line 15 – 17: Here we create a getter method for state (a public method
that returns a Boolean

Line 19 – 22: Here we create a setter method for state(a public method
that returns nothing and expects a Boolean value.

Why have we included the lifetime modifier within this method?

Week 4

Question
Class

Define the methods

Line 24 - 26: Here we create a method that will return whether or not the
lifetime of a question has dropped to zero (a public method that returns a
Boolean value).

Line 28 – 32: Here we override the toString method telling a Question object
how to interpret a Boolean state condition as a string. Note that we are calling
on the getState getter to implement this method. (think back to assumption 1)

Week 4

Question
Class

Complete code:

2. HUMAN CLASS

Week 4

Human
Class

Class and construction…

Line 2: Create the class of Human making sure that it is public…

Line 3: Here we say that all humans have a name (String) that is publicly
accessible

Line 4: All humans have a belief about a question. We assume that humans
are always skeptical and will not believe a statement until its been debated
and proven TRUE, and that their belief can only be altered by themselves
(private)

Line 5: In this model all humans exist with a question in mind, this question is
part of their fundamental ’existence’ in our data model.

Line 7 – 10: CONSTRUCTOR, all humans are created from an input name and
question. These inputs become a central member of the specific human object.

Week 4

Human
Class

Getters

Line 12 - 14: Here we create a public get method from returning a human
objects belief about the question.

Line 16 - 18: Here we create a public get method from returning a human
objects name.

Week 4

Human
Class

Line 20 - 26: Here we are creating a public method called debate(). This
method requires no inputs and returns a no values. In it, the function first sets
the state of the current question to the opposite of its current state (respecting
our assumption 2), and then aligns the current belief of the human with that
reality (assumption 3)

What happens if line 22 dnd 24:25 are switched??

Line 28 – 31: Here we over ride the toString method to return a more
useful print statement with a public method.

Methods

Week 4

Human
Class

Complete code…

4. TEST CLASS

Week 4

Test Class

CHALLENGE!!

1. Can you combine these methods in the TEST
class to ask/answer meaningful questions?

2. How can you combine methods to be sure
that the human and the question are in sync?

3. Can you break your program?
• How can you fix it?

4. What happens if a human gets new
information and the lifespan of the question
should be reset?

5. What other issues can you find? How might
you fix them?

Week 4

Test Class

EXAMPLE…

Week 4

Test Class

Output!

This code is not fully complete…
can you find a reason why?

Week 4

Test Class

ANSWER…

In the codes current set up every time that Jack debates, even if the
conversation has surpassed its lifespan, he will keep changing his mind…

Week 4

End

SUMMARY…

1. When creating classes it is important tothink
of what kind of questions and what kind of
information you are interested in regarding an
object….

2. Think about how much of that information
should be controlled by the user, and how
much should be hidden…

3. Finally remember that all coding is “a work in
progress” Unlike an essay, you don’t start at
the beginning and write to the end.

How are Question and a light bulb similar?
How are they different?

How are Human and light switch similar?
How are they different?

Homework hints…

