
GEOG 178/258
Week 6:

UML, Poisson Distributions & Midterm Prep

mike johnson

PART 1: UML

Week 6

UML

Unified Modeling Language

UML is a standardized modeling language
consisting of diagrams

1. Developed to help system and software
developers specify, visualize, document and
construct software systems.

2. UML is another way of modeling an abstraction
of reality

Week 6

UML

UML Class

Classes are represented as rectangles with stacked
compartments:

The top compartment shows the class name (Flight)
The middle: the class attributes
The last: the class operations (aka methods)

Think about how this already mirrors our structure
of (Attributes, Constructors, Getters& Setters,
Methods)

Week 6

UML

UML Class

Attribute lines are optional but if included are written in the following
structure:

Name : attribute type

In many “everyday” class diagrams, the attribute types usually show units that
make sense to readers (i.e., minutes, dollars, etc.). However, a class diagram
that will be used to generate code needs classes whose attribute types are
limited to the types provided by the programming language, or types included
in the model that will also be implemented in the system.

Often default values will be provided as well:

MyBank: double = 0

Week 6

UML

UML Class

Operations are documented is a list format in the following notation:

Name(parameter list) : type of value returned

(think to the signature of your methods like isInside!)

When parameters are needed the name and type should be explicitly
provided:

isInside (P1 : Point, P2: Point) : Boolean

Week 6

UML

UML Class

In important (or specific cases) UML can be used to diagram a particular
instance of a class

Week 6

UML

UML Inheritance

REVIEW: inheritance refers to the ability of one class (child class)
to inherit the identical functionality of another class (super class),
and then add new functionality of its own.

Week 6

UML

Symbol Descriptions

For more look here

https://www.uml-diagrams.org/class-reference.html

public class Example {
private int x;
protected int y;
public int z;

public Example() { ... }

public String toString() { ... }
private void foo(int x) { ... }
protected int bar(int y, int z) { ... }

}

Week 6

UML

UML Class Generic Example

Week 6

UML

OGC Point

Private variables

Week 6

UML

OGC

Week 6

UML

OGC Polygon

Week 6

UML

OGC. PolyhedralSurface

The `Big 7` Geometries

Week 6

UML

OGC Simple Features

WaterML (click me)

Week 6

UML

Real Life UML Data Modeling

http://docs.opengeospatial.org/is/14-111r6/14-111r6.html

https://www.eclipse.org/papyrus/

Week 6

UML

UML in Eclipse

PART 2: Poisson Distributions

Week 6

Poisson

Poisson Distribution

P = "#$%"&$'
(! × $+,-.+/-

The Poisson Distribution is a discrete probability
distribution that expresses the probability that a
given number of events, occurring in a fixed interval
of time or space with a known constant rate and
independently of the time since the last event.

Week 5

Story

Number of
Campers

Number
of Plots

1 278
2 92
3 25
4 4
5 0
6 0
7 1

Our goal:
1. What is the Poisson Distribution of these

campers ?
2. Can campers/plots able to be described by

such a discrete distribution?

Week 6

Poisson

Campers, Plots and Poisson
EXAMPLE # 1

Getting Poisson to Github
EXAMPLE # 2

Version Control

Week 6

Github

Create a new git repository: git init

Checkout an existing Repo: git clone <path>
Connecting to remote repo: git remote add origin <server path>

Adding files: git add <filename>
Adding all files: git add *

Committing to HEAD: git commit –m message

Pull files: git pull origin master *master can be subbed for any branch
Pull files and realign: git pull –rebase

Push files: git push origin master *master can be subbed for any branch

Week 6

Cheat
sheet

Github Workflows

Branching

Week 6

Github

Create a new branch called “new_feature”:
git checkout –b new_feature

Switch back to master:
git checkout master

Switch back to branch
git checkout new_feature

Combine branches (from master)
git checkout master *be sure your in master

git merge new_feature

** Sometimes conflicts will occur between branches that make merging impossible.
You have to fix these manually and add them back in via git add <file>

*** If you really mess up a file you can get the original back:
git checkout <filename>

Week 6

Branching Workflow

Cheat
sheet

PART 3: HW and MT Hints

Week 6

Homework
Hints

Homework Hints!

Interfaces
Geometry {getLength, getArea}
BoundingArea {isInside}[G]
Polypoints{getPoints, setPoints, getPointCount} [G]

Needed Classes:
BoundingBox (BA)
Circle (G)
Point (G)
PointBuffer (BA)
Polygon (PP)
Polyline (PP)
Rectangle (G)
Square (G)
Test (NA)

() implements
[] extends

Week 6

MT

Midterm Examples

Check out the class site for an example set of MT questions

